## №. 5



## November 1986

PERMISSION IS GRANTED to reproduce this publication, or any portion thereof. provided credit is given to the author and publisher, and to TWITT.

TWITT
(The Wing Is The Thing)
PO Box 20430
El Cajon, CA 92021


## MINUTES OF MEETING, 18 OCTOBER 1986

The fifth IWITT meeting convened at Gillespie Field on 18 October 1986. Present were Jack Green, Phillip Burgers, Pete Girard, Bruce and Georgie Carmichael, Cathy and Irv Culver, Bill Hannen, Ed Lockhart, Bob Peck, Andy Kecskes, Ray Johnsen, Harold Pio, Jim Neiswonger, Hernan Poznansky, Ralph Wilcox, Klaus Savier, Bob Fronius and Jeff Sawyer. Your Editor, to his disgust, found that his Army Reserve unit had scheduled a drill on the weekend of the 18 th and 19 th; his place was filled by a tape recorder. Unfortunately compressors, aircraft and other background noise are faithfully reproduced on the tape, making it a bit of a strain to listen to. If these minutes seem a bit sketchy, that's why.

The featured speaker was Irv Culver, who has been connected with aviation for so long that some authorities believe that be persuaded the Wright brothers to get out of the crowded bicycle-repair field and into something more lucrative. Irv (as far as your Editor can determine) covered the material in his flying-wing paper (published in issue no. 4) but went into more detail in describing the derivation of the simplified equations presented in that paper. But he also discussed another topic of considerable interest: flutter. Irv's thoughts on the "Physics of Flutter" appear elsewhere in this issue. A key point made in his talk is that there is no shortage of good aerodynamic data; the problem is that most of it is presented in a way that makes it unintelligible to most mortals. Irv seems to have gone to considerable trouble to put at least some of it within reach. Thank you, Mr. Culver.

NEXT IWITT MEETING: 15 November 1986, same old place! The highlight of the meeting should be a discussion by Hernan Poznansky and Danny Howell on the subject of active controls. Danny's background is in flight testing, airfoil selection, wind tunnel testing and servomechanisms.

BEAT THE HEAT: The little table below, taken from information in the August 84 Designee Newsletter (author: R. Caler) shows what temperature increase to expect on a colored f'iberglass surface facing the sun at two ambient air temperatures. COLOR Temp. (80 deg ambient) Temp (110 deg ambient) White 128 163 $\begin{array}{lll}\text { Yellow } 134 & 169\end{array}$
L,t. Blue/Aluminum
Purple/Silver
143
Red/Green
148

Black 198

169
177
183
219
231
237


| $I=$ MOMENT OF INERTIA AROUND H.L. |  |  |
| :---: | :---: | :---: |
| $K_{\alpha a}=$ AERODYNAMIC ANGULAR STIFFNES5 |  |  |
| $\Sigma K_{\alpha}=K_{\alpha 0}+K_{\alpha} a$ |  |  |
| $w_{1}=\left(\frac{\Sigma K_{\alpha}}{T}\right)^{\frac{1}{2}}$ | RADIANS PER AVIS | SEC. |
| $W_{H}=\frac{\left(\frac{\Sigma K_{\alpha}}{I}\right)^{\frac{1}{2}}}{2 \pi}$ | $\begin{aligned} & \text { CYCLES PER } \\ & \text { HERTZ } \end{aligned}$ | SEC. |

It should be noted that cont rul cables can be loose
a nd the cables, or neglecting to keep the cables ught.
Also, pusb-pull systems have some lost motion so that
the frequency of the control surface is a function of
amplitude so that up to some amplitude you can ha ve
nutter (limited amplitude Duittor). Even though the amplitude
is 1 lm ited the damage causes to the system by umite cycle lutter can result in increased lost motion. It is not smart to rely on control systems to prevent flutter.

Suppose that for the same dynamic pressure $P=\frac{\rho V^{2}}{2}$
we go to altitude where the denalty $\rho$ la lower go that we must
go faster to get the same alrspeed reading. Then for the same flapping
ampltude and frequency we have lese dampling angle.








sadeus apotu surdey auos

First estımate or measure the spanwise $\mathcal{G}$, ot one etevator.


Of course distributed mase balance proportional to
the distributed maes unbalance is always OX. A full apan alleron could have the came problem in the $A$ mode as an elevator in the $E$ mode il the wing wore astremely beavy and the body light, but aleo the body mode to bending would have to be cloce in frequency to the wing flapping mode irequency. The lleellhood of the above is easentially zoro. Sbgenerally if the mases balance ls sufficient to satisity the
Some words of warning about mass balancing.
First, mass balances must be attached to the surface sufficiently
strong to stand buffeting due to stall at high apeed and atiff enough
so that the mass balance resonating against the surface being balanced produces a frequency considerably above the expected flapping frequency of the surface that the control surface is attached to.
Some notes on flight flutter teating:
My advice is to crose-exam the design to make sure that there is no posibiblity of flutter at $1.5 \times$ VNE of the machine, then make a flight auttor demonstration, not a test. There is only one case where over balancing of control surfaces will cause flutter and that Is where the over balance causes an apparent unbalance.
Look at case E: a tall with full datic belance on the elovator all at the tip with a Inghe aft tuselage so the furelage motion is large. The inboard largeat part of the elevator sees the mase balance at the tip as if it were on the tralling edge of the elevator due to ite opposite motion. (Explamation af above: Fhill atatic balance means that you balance around the hinge llae and in thle. example put all the balance at the tipe.) Full etatic balance does not mean that you do not have a flutter problem.

[^0]HIGH PERFORMANCE SAILPLANE DATA, compiled by Bob Fronius

| Type | Min | sink | at (speed) | span | AP. | L/ D |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HP-12E | 1.8 |  | 47 | 54.6 | 21.6 | 39 |
| HP-15 | 1.6 |  | 45 | 49.2 | 33 | 45 |
| HP-19 | 1.6 |  | 40 | 49.2 | 21.4 | 42 |
| Lamson | 1.5 |  | 50 | 65.6 | 23 | 43 |
| Mescalero |  |  |  | 72 | 36 | 44 |
| White Knight | 1.7 |  |  | 49.2 | 18.1 | 34 |
| Diamant 19 | 1.6 |  |  | 62.5 | 24 | 42 |
| VHP-1 | 1.6 |  | 49 | 57 | 28.5 | 40 |
| RHJ-8 | 1.9 |  | 50 | 53 | 23.2 | 39 |
| DG-202/17 | 1.7 |  |  | 55.8 | 27.3 | 45.5 |
| DG-400/17 | 1.76 |  |  | 55.8 | 27.3 | 45 |
| Elfe | 1.2 | poor in | weak air | 52.5 | 20.4 | 40 |
| BS-1 | 1.78 |  | 50 | 59 | 23 | 44 |
| Libelle | 1.8 |  | 47 | 49.2 | 23 | 35-39 |
| Kestrel | 1.8 |  | 51 | 55.7 | 25 | 43 |
| 304 | 1.34 |  | 57 | 49.2 | 22.8 | 43 |
| 604 | 1.64 |  | 45 | 72.17 | 29.8 | 49 |
| Jantar | 1.5 |  | 40 | 67.2 | 29.2 |  |
| 48 |  |  |  |  |  |  |
| Lark IS 32 | 1.67 |  |  | 65.6 | 27.25 | 46 |
| Cirrus | 1.64 |  | 46 | 58.2 | 2.5 | 44 |
| Nimbus II | 1.6 |  | 47 | 66.6 | 28.6 | 49 |
| Nimbus 3 | 1.71 |  |  | 75.13 | 32.3 | 55 |
| ASW-12 | 1.6 |  | 53 | 60 |  | 47 |
| ASW-15 | 1.8 |  | 42 | 49.2 | 20.45 |  |
| 38 |  |  |  |  |  |  |
| ASW-17 | 1.64 |  |  | 66 | 27 | 48.5 |
| ASW-22 | 1.35 |  |  | 78.9 | 37 | 57 |

HAVE YOU SEEN THESE WINGS?
These pictures, from Al
Backstrom's collection, show two low AR flying wing designs. Bob Fronius says that the one with endplates looks like one he saw at Santa Ana in 40-41. It also resembles a design by one Horten or Horton (not related to the German brothers). The other looks like the Lanier Paraplane of the same era. The truth is that we have no idea where these beasts come from. If you can enlighten us, call Bob with the information!



## II EXPPRIIIEVTIL PISNIER FLLIIGI WIIG

by Ladista) Pazmany, EAA 2431

T'he "flying wing" idea is as old as aviation itself Even the early experimenters realized the appar. ent advantages of the configuration but lacked the knowledge and materials necessary for success. Raoul Hoffman's All-Wing design of 1934 illustrated in the December issue of the EXPERIMENTER was one adaptation of the idea to the lightplane field. In recent years we have had such efforts as the Horten and Fauvel gliders, the Northrop series, Backstrom's "Plank" and others.

In this article I'd like to discuss the possible advantages of this design solution and draw a comparison between it and the conventional approach. The accompanying three-view drawing and the artist's impression by George Collinge which appeared on the cover of the January issue of SPORT AVIATION outlines one possible solution of the flying wing application to light aircraft.

There are advantages to this design which can be demonstrated easily without too much calculation, such as reduced weight and reduced number of parts to manufacture. The weight reduction will result in a general performance improvement, and as an example the increase in the V-max will be calculated. The comparison will be made between a conventional two-place, side by side airplane and a pusher flying wing (P.F.W.), both using the same wing area and the same power.

Due to the elimination of the horizontal tail and part of the fuselage, a 50 lb . weight saving can be estimated. Thus our first comparison table will appear as follows:

|  | Conventional | P. F. W. |
| :--- | :---: | :---: |
| Gross weight | 1200 lbs. | 1150 lbs. |
| Wing area | $114 \mathrm{sq} . \mathrm{ft}$. | $114 \mathrm{sq} . \mathrm{ft}$. |
| Engine | 85 hp | 85 hp |
| Airfoil | NACA $63{ }_{2} 615$ | NACA $633_{2} 615$ |

Calculating the parasitic drag coefficient for each design reveals an interesting comparison:

## FUSELAGE

Tabulating the equivalent flat plate area as follows:

|  | Conventiona | W. |
| :---: | :---: | :---: |
| Skin friction \& irregularities |  |  |
| Сanopy | 0.114 sq. ft. | 0.114 sq. ft |
| Engine installation | 0.730 sq.ft. | 0.730 sq. f |
| Total area | 1.15 |  |



The drag coefficient for the fuselage will bc (based on wing surface):

Conventional - $\mathrm{C}_{\mathrm{Df}}=1.159=.0102$
P. F. W. - - $-\mathrm{C}_{\mathrm{Df}}=\frac{114}{114}=.0090$

## TAIL SURFACES

On the conventional airpiane the following values will be found:

$$
\begin{aligned}
& \text { Horizontal Tail }-\mathrm{S}_{\mathrm{h}}=18.0 \text { sq. } \mathrm{ft} . \\
& \text { Vertical tail } \\
& \text { Total tail area }-\mathrm{S}_{\mathrm{v}}=\begin{array}{r}
9.7 \text { sq. } \mathrm{ft} . \\
27.7 \text { sq. } \mathrm{ft} .
\end{array}
\end{aligned}
$$

In previous calculations the tail drag coefficient based on the wing area was found to be:

$$
\mathrm{C}_{\mathrm{Dt}}=0.0024
$$

Due to the elimination of the horizontal tail and a slight increase in the vertical tail area, the P. F. W. lail area is estimated to be 15 sq . ft. Then the drag coefficient can be calculated thusly:

$$
\mathrm{C}_{\mathrm{Dt}}=0.0024 \times \frac{15}{27.7}=0.0013
$$

## WING

Due to the possibility of obtaining a complete laminar flow over the entire wing because of the absence of the turbulent propeller slipstream, the following considerations can be made:

On the conventional airplane, $30 \%$ of the wing area is subjected to turbulent flow, while on the P. F. W. the $100 \%$ wing area can be considered as laminar.

On page 29 of NACA Report No. 824, Fig. 35, it is stated that the effect of the propeller slipstream turbulence increases the section drag coefficient by $50 \%$. The values shown are for a $66(2 \times 15)-018$
airfoil, and the $C_{d o}$ is increased from .0040 for the undisturbed airfoil to $\mathrm{C}_{\mathrm{d} 0}=.0060$ (mean value) for the disturbed airfoil. Then, on page 169 of the same report, the following is given relative to the airfoil considered in this comparison (NACA 63 2615 ):

$$
\mathrm{C}_{\mathrm{do}}=.0103 @ \mathrm{RN}=6.000 .000 \& \text { standard }
$$

roughness
and for the disturbed airfoil we can calculate:

$$
\mathrm{C}_{\mathrm{do}}=.0103+\left(.0103 \times \frac{50)}{100}=.0154\right.
$$

Then the wing parasitic drag coefficient for the conventional airplane will be:

$$
\begin{aligned}
.70 \times .0103 & =.0079 \\
.30 \times .0154 & =.0046 \\
C_{\text {do }} & =.0125
\end{aligned}
$$

Thus the total parasitic drag coefficients for each airplane can be compared as follows:

|  | Conventional | P.F.W. |
| :--- | :---: | :---: |
| Fuselage | .0102 | .0090 |
| Tail surfaces | .0024 | .0013 |
| Wing | .0125 | .0103 |
| Total Parasitic Drag | .0251 |  |

Assuming that both airplanes will have the same tapered wing with an aspect ratio of 7 , then the induced drag coefficient can be calculated. The wing and fuselage efficiency is found to be: $\mathrm{e}=.83$. Then:

$$
\mathrm{C}_{\mathrm{Di}}=\frac{\mathrm{CL}^{2}}{\mathrm{r} \times \mathrm{exAR}}=\frac{\mathrm{CL}^{2}}{\mathrm{r} \times .83 \times 7}=0.0548 \mathrm{C}_{\mathrm{L}}{ }^{2}
$$

The total drag coefficient for each airplane will be:

Conventional $-\mathrm{C}_{\mathrm{D}}=.0251+.0548 \mathrm{C}_{\mathrm{L}}{ }^{2}$
P. F. W. - $\mathrm{C}_{\mathrm{D}}=.0206+.0548 \mathrm{C}_{\mathrm{L}}{ }^{2}$

The maximum speeds can be estimated for each airplane:

$$
\begin{aligned}
& \text { Conventional }-V_{\max }=147 \mathrm{mph} \\
& \text { P. F. W. - } \mathrm{V}_{\max }=157 \mathrm{mph}
\end{aligned}
$$

The lift coefficient for these speeds is determined by the following formula:

$$
\mathrm{C}_{\mathrm{L}}=\frac{\mathrm{W} / \mathrm{S}}{0.00256 \mathrm{~V}^{2}} \text { where } \mathrm{W} / \mathrm{S}=\text { wing loading }
$$

Calculation of the lift coefficient is as follows:

$$
\begin{aligned}
& \text { Conventional }-\mathrm{C}_{\mathrm{L}}=\frac{1200 / 114}{.00256 \times \overline{147^{2}}}=.187 \\
& \text { P. F. W. }--\mathrm{C}_{\mathrm{L}}=\frac{1150 / 114}{.00256 \times \overline{157^{2}}}=.159
\end{aligned}
$$

The value of the total drag coefficient for each airplane will be:
Conventional $-\mathrm{C}_{\mathrm{D}}=.0251+.0548 \times .187^{2}=.0270$ P. F. W. $-C_{D}=.0206+.0548 \times . \overline{159} 9^{2}=.0219$

The value of the drag can be calculated with the following formula:

$$
\begin{gathered}
\mathrm{D}=\frac{\mathrm{W}}{\mathrm{C}_{\mathrm{L}} / \mathrm{C}_{\mathrm{D}}} \\
\text { Conventional - D }=\frac{1200}{.187 / .0270}=173 \mathrm{lbs} \\
\text { P. F. W. }--D=\frac{1150}{.159 / .0219}=158 \mathrm{lbs}
\end{gathered}
$$

The propeller efficiency for a tractor installation can be estimated as: $n=.80$, while for the pusher type
it will be slightly smaller say: $n=.78$. Then the maximum speed can be determined with the following formula:


The cblained values check out with the previously estimated, so the improvement in maximum speed is then determined:

$$
\mathrm{V}_{\max }=157-148=9 \mathrm{mph}
$$

and in percentage:

$$
\mathrm{V}_{\max }(\%)=\frac{9}{148} \times 100=6.1 \%
$$

The improvement obtained is not fantastic, but the airplane designer knows that any performance improvement in modern airplanes is built up through the summation of many small contributing factors. The pusher flying wing configuration would seem to offer many advantages which will result in improved performance. Certainly it merits close study and further experimentation.

It must be emphasized that this design proposal is presented as an idea and needs further evaluation. The question has been raised regarding the problem of weight and balance on an aircraft of this type, since the CG travel of tailess aircraft is very limited. Possibly this can be improved by moving the passengers nearer to the CG. Additional study and analysis of this and other problems would be necessary before the final configuration could be arrived at, but since airplanes of this type have been built and flown successfully, it should be possible to evolve a suitable solution.

## SPECIFICATIONS




ANGLE of ottackThe acute angle between the chord of an airfoil (wing) and the relative wind. (Note that the relative wind is not always parallel to the longitudinal axis.)

1. An Interim Report on the Stability and Control of Tailless Airplanes. Stability Research Division. NACA TR 796, 1944.
2. Preliminary Wind-Tunnel Investigation at Low Speed of Stability and Control Characteristics of Swept-Back Wings. W. Letko and A. Goodman. NACA TN 1046, April 1946
3. Effects of Sweepback and Aspect Ratio on Longitudinal Stability Characteristics of Wings at Low Speed. Shortal and Maggin. NACA TN 1093, July 1946.
4. Approximate Relations and Charts for Low Speed Stability Derivatives for Swept Wings. Tell and Queijo. NACA TN 1581, May 1948.
5. Estimate of the Effectiveness of Flap Type Controls on Sweptback Wings. Lawry and Schneiter. NACA TN 1674 , August 1948.
6. Investigation at Low Speeds of the Effect of Aspect Ratio and Sweep on Static and Yawing Stability Derivatives of Untapered Wings. Goodman and Brewer. NACA TN 1672, August 1948.
7. A Comparison of the Lateral Motion Calculated for Tailless and Conventional Airplanes. C.W. Harper and A.L. Jones. NACA TN 1154, February 1947.
8. Notes on the Stability and Control of Tailless Airplanes. Robert T. Jones. NACA TN 837, December 1941.
9. Recent Tests of Tailless Airplanes. A. Lippisch. NACA TM 564, May 1930.
10. Chief Characteristics and Advantages of Tailless Airplanes. A.D. de Lajarte. NACA TM 794, May 1936.
11. The Dreieck I Tailless Airplane, a Low-Wing Cantilever Monoplane. NACA AC 159, March 1932.
12. Description of the Westland Hill Pterodactyl Mark IV. NACA MP 27, August 1931.
13. Determination of the Stability and Control Characteristics of a Tailless All-Wing Airplane Model with Sweepback in the Langley Free-Flight Tunnel. J.P. Campbell and C.L. Seacord Jr. NACA ACR L5Al3, February 1946.
14. Determination of the Stability and Control Characteristics of a Straight-Wing Tailless Fighter-Airplane

[^0]:    tions of Swept Wings of Various Taper Ratios. B.C.
    Wallner. NACA RM L8A26, July 1948 .
    

    Comparison Between Measured and Theoretical Span Loading
    on a Moderately Swept-Forward and Moderately Swept Back
    1947.

    ## 28.

