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In the Air

This edition of RC Soaring Digest includes a technical report 
from the Air Force Research Laboratory. It demonstrates the 
tremendous strides made in the areas of computational fluid 
dynamics, data collection and interpretation, and modeling of 
dynamic systems. Our hope is that readers will appreciate this 
material and we welcome feedback, positive or negative, on the 
inclusion of this paper in RCSD. 

Aaron Donovan posted this image 
of an inexpensive center finder on 
the Balsa Model Aircraft Builders 
Association FaceBook page. It 
uses two pieces of 3/4" pine and a 
45˚ triangle; easily made and quite 
accurate. 

We just received word that William 
"Bill" Foshag passed away in late 
April. Bill was an aeronautical 
engineer employed by Fairchild 

and involved in Sikorsky aircraft development in the 1950s and 
60s. He was also a long-time reader of RCSD and contributed 
material to our book, "On the 'Wing... Volume 2," concerning 
various mechanical methods for achieving rudder differential. 

Our sincere thanks to Curtis Suter for the background image on 
the Contents page. It's very much appreciated.

Time to build another sailplane!

https://www.facebook.com/aaron.graham.9047
https://www.facebook.com/groups/1510169962560076/
https://www.facebook.com/groups/1510169962560076/
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In 2016 I won the “Polecat,” a big two-day  Altitude Limited 
Electric Soaring (ALES) contest held in south central 
Pennsylvania. Even though I’ve been flying contests for over 25 
years, I learned a few valuable lessons at this event and wanted 
to share some tips and techniques that will help others do better 
in their next competition and improve their flying techniques in 
general. These tips should be useful even if you don’t fly electric 
launched gliders or compete.
For the past five years the Polecat has been the premiere North 
American e-soaring event with a full matrix of over 70 pilots from 
the U.S., Canada, and South America attending. While guys 
come to the Polecat for the challenging soaring, it’s really the 
whole roast pig BBQ dinner Saturday night they dream about.
Contest Preparation Lesson
If you want to just fly for fun, your preparations can be lax, just 
remember to charge your batteries and don’t forget the post-
contest beer. If you want to place well however, your head has 
to be more in the game and detailed preparation is vital.
My prep starts with some practice the week before, and 
shooting some (lots) of landings as the contest will unfortunately 
be decided by landing points among the top pilots. A little 
practice against the clock will greatly focus your mind and 
attitude. I will even fly a few official full rounds, practicing a 
routine of getting the plane ready to fly, reading the air before 
the round starts, and having a game plan for launch. 

I also start to look at the weather forecasts as they will 
determine which planes I might bring and how much ballast and 
larger motor packs I might take. This year the Polecat forecast 
was for hot conditions with light winds so I left the heavy planes 
at home and took minimal ballast for the planes I took.
A day or so before the contest, I hit the workshop and go 
through the gliders nose to tail with FAA Inspector-like 
thoroughness to find any potential failures in the airframe, 
linkages or the wiring/radio system. I always find an item or two 
that needs preventative maintenance or repair, especially after a 
week of landing practice which is really hard on your systems.
I first make sure the entire motor system is in good running 
condition. Most of the contest-losing tech issues I see others 
having at an event are power system related and could have 
been prevented easily. I’ve seen props and spinners come off, 
ESCs failing to initialize, loose motors and wires, and battery 
charging failures.
I tighten or reset the spinner collets or set screws, check the 
prop for damage, and torque the motor mount screws to spec. I 
also make sure the prop folding bands are in good shape, check 
the motor wire to ESC connections and the ESC to battery 
connections for any fatigue. Of course I also check the servos, 
radio, and test the altitude limiter for correct operation.
I really hate having technical issues at a contest (or even a fun 
fly day) and when I get to the field, I want to know that I can 

ALES & F5JContest Tips & Lessons Learned
Paul Naton / Radio Carbon Art Productions, pnatonrca@gmail.com, http://www.radiocarbonart.com
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follow my pre-flight routine and step up to that first round flight 
line not worrying about the gliders condition or performance. 
Pre-contest preparation is a big confidence booster for any 
competitor and the first step in doing well in the standings.
Why Batteries Matter Lesson
For F5J and ALES events, having the best power system 
battery correctly sized and charged is absolutely critical. Why? 
Your battery performance determines your maximum airspeed 
and launch angle with your chosen motor and prop size. Any 
loss of power to the motor lessens your ability to get to the lift 
or penetrate into the wind within the limited motor-run window. 
Winning any e-launch contest starts with good choice and 
management.
At this last Polecat I saw many planes launch and you could 
instantly hear the motor rpms start to drop off quickly, telling me 
their packs were weak or not fully charged.

A few pilots even launched with totally depleted packs, costing 
them the heat and any chance of placing for the mugs. I noticed 
a few pilots flying multiple heats off the same pack without re-
charging; that’s not a good practice unless you have a small 
motor and a huge pack to feed it. 
A big mistake rookies make is to have lots of motor packs, but 
no way to know if those packs were old and past their prime and 
not up to a 30 second motor run without big voltage sags.
Battery Routine
I always monitor all of my motor packs overall health with proper 
cycling and capacity checking routines. I’ll never fly a contest 
heat with a pack that has shown any signs of a capacity drop 
or rising internal resistance measurements. Older packs are for 
practice or sport flying only.
      For the contest, I make sure I have at 

least two or more new high quality packs 
that have been cycled and tested for 
my primary plane. Having a newer set 
of packs for your back up plane is also 
important, your chances of using your 
back-up glider are very high in a two day 
comp. 
For each contest day, I take the two 
best performing packs and rotate them 
between heats, so after the heat I can 
charge the pack at a 1C rate safely and 
have one pack always fully charged and 
ready to go if needed. You may have 
to fly back-to-back heats so one good 
battery is not enough!
To be really safe, I use a LiPo voltage 
checker before the pack goes in the 
plane to ensure that it is indeed fully 
charged. A few years back I almost flew 
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a fly-off heat with a mostly dead pack as in the stress of the 
moment I grabbed a depleted pack instead of the charged 
one, and only my routine of checking with the meter revealed 
the mistake. 
If you want to learn more about how to optimize and 
track LiPo battery performance, I cover these subjects in 
detail in my Electric Sailplane Clinic #3 instructional video 
available at my r/c glider instructional video website, www.
radiocarbonart.com.
2016 Polecat Battery Lesson Learned
I was flying my Euphoria V2 this year and the fuse only fits 
packs of 1200mah capacity or smaller. During the day I was 
using two newer 3S 1200mah Revolectrix packs for the 
contest that I rotated out each heat. 
I hadn’t considered the fly-offs though, which are three 
heats in quick succession with no time to charge in between 
launches. While I could have done a second launch on the 
1200 pack, I knew that the power was going to drop off 
quickly as the motor in the Euphoria is a Neu 1107 with a 16-
10 prop.
The only choice I had was to use a smaller 1000mah pack for 
the third fly-off heat, and this pack has seen many cycles! Of 
course the motor rpms and climb rate were noticeably less than 
the newer Revo packs, but fortunately for me the fly-off cut-
off altitude was only 100 meters, and the slightly lower power 
didn’t keep me from getting to the air I called located about 300 
meters cross wind. 
Next time I’ll have three good contest packs ready in case I 
make the fly-offs.
Enough with the technical and preparation issues, let’s discuss 
some thermaling and air reading, that’s what gliding and 
contests are all about. 

Basic Air Reading Mistakes Lesson
Practice, airframe preparation and battery management lead 
you to that moment at the flight line where you should not be 
thinking about your glider, but where to put it in the sky.
The thermals for the 2016 contest were just superb. Actually 
almost too easy to hit. I got a 10 minute warm-up flight at 8 am 
on the first day. Sure, there were some strong sink cycles, but 
the sink areas were small, and with the light winds, easy to fly 
through. You could not fly more than 300 meters without hitting 
some sort of lift.
So why were there so many heats flown when half the planes 
were on the ground with 3-5 minutes left in the task? These 
early landers were not always the Radians or the beginner 
pilots. There were many 4M mouldies flown by veteran pilots 
that just dropped out of a sky filled with lift.
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I watched the thermaling action all day and lots of pilots made 
the same two basic thermaling mistakes over and over. First 
mistake was not having a game plan or a confirmed air read 
before the launch window opened; they just launched upwind 
with the pack hoping to hit lift. Second mistake was not reading 
the air well once you hit your launch altitude, and not making 
a quick decision to fly elsewhere to find a thermal if the initial 
launch location at motor cutoff was not working out.
Lets discuss the first thermaling mistake and what you should 
do to correct it.
Like any man-on-man contest, you have some time before 
launch to look around and try to determine where the closest 
thermal is and if you can still get to it by the time the heat launch 
window opens. The Saturday Polecat conditions were a bit odd 
— huge lift was all around, but very few ground signs presented 
with minimal wind shifts and velocity changes, ground signs 
which usually indicate thermal locations and movements. The 
only sure clues to thermal location were a few Buzzards way up 
high and moving out fast. 
I think I had only one sure air read from a ground sign all day, 
and that thermal was way downwind and off field by the time the 
heat started. The lift “threshold” was a bit high the first day, the 
threshold describing the minimal altitude required to be able to 
take a thermal out. It was just about impossible to thermal out 
below 150' for most of the day, as lots of pilots found out the 
hard way. 
So with the lack of ground signs and a low thermal threshold, 
you were going to have to get off-field and find a thermal on the 
way up or right after motor cut-off. My game plan for most of the 
day was to read the plane on the way up, and not rely on ground 
reads at all. That plan worked every time.
After the launch horn, my plan was to fly out to the higher 
ground areas around the field and read the planes drift and 
climb rate as I gained altitude under power. My Euphoria has a 
bit of extra power, so I use that speed to go out and slowly climb 

through as much of the surrounding air space as I can sampling 
the amount of drift I’m seeing on the plane and noting any areas 
of increased climb rate or angle. I’ll turn and change directions 
as needed to confirm a thermal read I might be getting.
For ALES you can use the full 30 seconds of powered flight to 
advantage and I have a count down timer set on my radio so I 
know how much time is left on the motor regardless of altitude 
reached. I’d like to have the plane right at the cutoff altitude at 
30 seconds and hopefully in the thermal or darn close to it as 
glider bleeds energy after motor cutoff. 
In the new F5J class, you still have the full 30 seconds of motor 
if you need it, but you get a better score the lower your launch 
altitude is. This low-launch altitude goal means your air calling 
and glider reading skills are even more important than with 
ALES.
If I read the planes responses correctly on launch, the thermal 
will be within a 100 meter circle from my max altitude point and 
I’ll just start a search pattern to find the best lift, and try to find 
it as quickly as possible. If I don’t find the thermal I was looking 
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for or it turns out to be too weak, I’l just go to my fast flight mode 
and fly off to another part of the sky without hesitation. I’ll give 
myself 30 seconds or less to find lift after motor cutoff, otherwise 
I will get the heck out of that area and find another thermal. The 
faster you make your decisions on where to go, the better.
So what is this drift attitude you use to read the air on the way 
up the launch? I cover this advanced thermaling subject in 
full detail in my latest two hour instructional video the Thermal 
Soaring Master Class, but here is a brief description.
Reading the drift angle is a technique of finding the possible 
location of a thermal by watching how the glider drifts or yaws 
off course when influenced by the inflow currents around a 
thermal. A glider flying through a thermal inflow wind shift will 
tend to yaw the tail towards the thermal. Seeing and interpreting 
the subtle changes in your course angle while in flight is a hard 
skill to learn, but it’s one of the best ways to find new lift in the 
absence of any ground signs or other lift indicators. I used 
drift indicators to find my first thermal in about 75% of my heat 
launches at the Polecat. Often I could read the whole pack of 
planes launching and could see how they all reacted to a nearby 
strong thermal by drifting across the thermal inflow wind shift. 
The Thermal Master Class video teaches you how to read the 
drift angles to find a new thermal core.
Move Your Butt Quickly Lesson
The second thermaling mistake is reading your plane effectively 
after motor shut off and not deciding to move away from sink 
quickly enough.
If you have no idea where that first thermal is and you just 
launched straight up wind, and at 20 seconds you hit 200 
meters, you’ve wasted 10 seconds that you could have spent 
flying through more of the thermal air space looking for lift. Lots 
of pilots would execute this exact plan, hoping to find lift right 
after motor cutoff, then not deciding fast enough to move out of 
the area when they realized they launched into an area of sink. 

I saw this scenario play out over and over again at this contest 
as four or five planes would begin circling in the general area of 
the upwind altitude cutoff height, not even knowing if they were 
in lift or sink. They would all lose altitude together, though one 
might luck into some lift and start to climb. Most would just loiter 
in the same area hoping to hit “the big one” until they got too 
low to be able to look elsewhere. Down in five minutes with lift 
everywhere. Herd mentality and not making a quick decision to 
move elsewhere when not gaining altitude. 
You must read your own plane first and ignore the crowd. The 
crowd is only good for clues to new lift if the crowd is in different 
airspace. If your glider does not want to circle or feels dead on 
pitch, get out of that area fast, you will have plenty of altitude at 
200 meters to do two big search patterns across the entire field. 
If you move out of sink quickly, your chances of getting your 
10 minutes goes up fast. The thermals at this Polecat where 
everywhere, and even if your glider was of low performance, if 
you just flew a short distance away from neutral air or sink, you 
were bound to find lift. There was no excuse for not getting 10 
minutes from 200 meters up no matter what type of glider you 
flew.
Getting Down Safe Lesson
As our electric gliders are getting lighter and lighter, they do 
have their structural limits and you have to keep that in mind in 
stronger lift conditions. I spent most of my rounds trying to safely 
dump altitude as I was launching into big lift right off and was 
high enough in a few minutes to get my ten. My Euphoria has 
a stout airframe for an F5J model, but it gets bendy at higher 
speeds and with the aft CG I like to fly at, I have to watch the 
airspeed and unplanned pitch departures as the airframe bends. 
There were a few “boomers” on Sunday, I was in full camber #3 
and the Euphoria was still screaming and climbing like a rocket. 
I’ve got the small and light MKS 6100 HVs controlling everything 
on this big 4 meter glider, and it was a real job to keep the 
ship from over-speeding. At around 60 mph I was loosing pitch 
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control as the boom flexed and twisted going through the violent lift. 
Just had to be conservative with the speed until I got out of the lift and 
was able to work my way down safely and hit the landing tape without 
blowing up anything.
Landing Too Early Lesson
The only big mistake I made all weekend was to drop about 20 
seconds off an otherwise perfect flight. How did I do that?
I was killing time over the field with about a minute 30 seconds to go in 
the round. I was doing big circles staying up wind of the tape and out 
of the incoming traffic. Lift was everywhere and it was easy lift even at 
100'. 
At 45 seconds, I turned left to position the plane for my usual pattern 
entry. Then with 40 seconds left, the air changed, and changed 
drastically. I could barely turn, the sink was coming in hard, the wind 
shifted, and I was suddenly way lower than I wanted to be and far from 
the tapes! At 30 seconds left I was at 10' high and still out over the 
wheat field which was a Zero heat score if touched. 

I knew I was going to be way early. I had to make the 
field first, then decide if I could make the tape and 
salvage some landing points.
I had just enough energy to get back on field, line up the 
tape and hit a perfect 50 landing. Just I was 20 seconds 
early! That mistake in reading the local field conditions 
cost me the Sunday daily first place mug and three 
positions on the board. 
Lesson Learned: I was a little too busy with spotting 
traffic and visualizing a landing pattern to notice how 
strong the sink was at the other side of the field. I then 
was late by a few seconds in adjusting my speed and 
altitude to the sinking air. I should have noticed the 
changing air sooner and put some extra altitude in the 
bank before setting up for the last 30 second pattern. A 
basic mistake in situational awareness. 
I still won the fly-offs and got the overall trophy win 
despite this big error.
Don’t Worry About Making Mistakes Lesson
Those who take the risks of making mistakes learn the 
most. Try new tuning set ups, make that crazy thermal 
location prediction and see if it works. Launch low, land 
early a lot, don’t give up on that ragged little streak of lift. 
Walk for your plane once in a while. Don’t always fly in 
perfect conditions.
I’m happy to answer any questions you might have about 
any of these subjects. Contact me the usual ways or 
through the radiocarbonart.com website. 
Here’s a link to watch a short HD video I shot that gives 
you a taste of the action at the 2012 Polecat ALES event: 
<https://youtu.be/55PuCcke1a4> 
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BAe Hawk low pass
A PSS BAe Hawk, built by Matt Jones from the popular Andy Conway 
plans. 34" span with an AUW of ~2lb, this fully built up model has a sporty 
performance on the slope with 2 channel R/C controlling ailerons and an 
all-moving tailplane. The model is now owned by Andy Meade, and it is 

Andy at the controls when the photo was taken on 17th April 2016 – a fast 
low run towards the end of a fantastic weekends flying on the Great Orme. 
Photo by Phil Cooke – Power Scale Soaring Association, 
<http://www.pssaonline.co.uk> for more information on this event. 
Canon EOS 7D, ISO 320, 1/1600 sec., f5.6, 220mm 
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Here are a few pics of the construction and on the 
airfield. 

The Schleicher ASK-18 had a steel tube fuselage and 
wooden wings spanning 16 meters. My model spans 
5.33 meters and weighs 11.3 kg. The fuselage is (sadly) 
fiberglass, but has imitation steel tubing in the cockpit 
section. 

Best greetings from Switzerland! 

Markus, trumapo@kfnmail.ch

Markus Portmann’s 1:3 scale ASK-18
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Alessandro (Alex) Villa, filotto78@gmail.com

KA-7 Rhönadler
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Two years ago, I was looking for a new small kit to build 
during the winter season. A small “scale” glider, because the 
intent was to test some scale techniques that I would like 
to adopt on the actual model I’m building (Aeronaut Mu 13 
Bergfalke).

After some nights spent in front of Google and forums I 
decided to buy the Schleicher KA-7 Rhönadler from Jamara. 
It’s a laser cut wooden kit that I found at a reasonable price 
in Germany.

No big deviations have been made from the supplied 
building instructions, but I did make few changes when it 
came to the fuselage. 

The first one concerns the wing joiner carbon fiber rod. The 
original idea was to not provide any case for it, not in the 
wing root area, not in the fuselage, leaving the wing joiner 
free to float in the fuselage. I didn’t like this solution, so I 
used an aluminum tube in both wing and fuselage.

I’m not sure how Jamara intended to keep the wings in 
place, but I decided to use the same aluminum tube to 
create a passage for the spring I used to keep the wings 
against the fuselage.

The second one was the modification of the canopy frame 
front former and the removal of its horizontal support. It was 
exactly in front of the instrument panel I intended to add. 
Very ugly and not scale-like. I decided that the canopy frame 
would have been strong enough even without these items 
and I choose to remove them.

The third was about the tow release, not foreseen in the 
original kit. I found a small area inside the fake skid, among 
two fuselage formers. I made the necessary servo fixture 
and then I covered the recess with a suitable plywood plank 
secured by small countersunk screws.

The last fuselage modification was about the tail command. 
Originally intended for two unaesthetic bowden cables, for 
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the rudder I decided to use the classic pull-pull cables, while 
for elevator I preferred to use the same method already used 
on my Grunau Baby. A small threaded rod hinged to a rigid 
wooden dowel coming from the servo and secured to the 
hole in the elevator through two M3 nuts. 

All the other modifications concerned the scale details.

With my 3D printer I printed head and hands of the pilot. 
The body was made of soft foam. At the end I had fun by 
improvising myself to be a tailor and then I provided the 
clothes as well. Before the maiden flight I gave the head to 
a friend of mine who is a professional decorator. Excellent 
result if you think that the head is less than 1 inch tall…

I used my Silhouette Cameo to cut out the fake 
reinforcement of sewing wing covering tissue. In order to 
be as “scale” as possible, below the sewing reinforcement, 
I glued very small pieces of brown thread trying to simulate 
the covering seams.

Also, the aileron hinges have been made in “retro” style. 
Instead of using CA hinges or, worse than that, aileron clear 
tape, I preferred to redesign and make them using thin 
plywood and a small brass nail as pivot. The final outcome 
wasn’t too bad.

Instrument rings for the panel are 3D printed and painted 
with copper color  varnish.

Finally, I also had fun in designing and creating a dedicated 
wooden case for this glider. I printed all the fixtures to hold 
the tools needed to assembly the model on the field.

The overall kit quality was pretty good but not excellent. 
Unfortunately, I found several plywood planks excessively 
bent. I fixed the problem by soaking the bent pieces in hot 
water and then I leave them to dry slightly bent on the other 
side. I know that it isn’t a scientific method, but it actually 
works!
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Center of gravity and command excursions have been 
set as per manual.

The whole model has been covered with Diacov 1000 
tissue. This product is a self-glue heat shrink fabric used 
also on full scale airplanes and produced by Diatex. The 
weight per square meter is similar to Oratex but it costs 
about half. Moreover, it’s available on rolls 1.5m wide 
that allows a good panel layout and saves material. It’s 
available only in white, but it can be painted directly.

The maiden flight was carried out on my usual slope 
(Monte Mottarone, Italy) that I know very well, on a 
day with good lifting conditions. After having gained a 
suitable altitude, the first thing I wanted to try was the 
stall condition since this is the first model with forward-
swept wing. It actually was as I expected, completely 
controllable, and also the ailerons were effective enough 
even in very slow speed conditions.
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During the last Easter Monday, I also had the chance to try 
it under aerotow. After a brief tow I decided to release (don’t 
forget that wingspan is just two meters and in seconds it 
becomes very very small…). The day had perfect lift so that I 
was able to test it also in thermal conditions. The typical pitch 
instability behavior of forward-swept wings helped me to better 
understand when I caught a thermal and turn around in meters. 
I didn’t know that forward-swept wings are affected by adverse 
yaw behavior less than straight or swept wing, I set on the 
radio a certain amount of aileron to rudder mixer that I removed 
immediately.

That’s the story of this model. As usually happens with a 
vintage glider, the interesting phase is building rather than 
flying. But I was honest with you: at the beginning of the article I 
told you that I was looking for a model to build, not to fly!

<https://jamara-shop.com/KA-7-Lasercut> 
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I had a classic Black & Decker Dust Buster vacuum in my shop for years as 
they are great for cleaning up table top debris and sanding dust while working 
on RC gliders.
The unit’s performance was never that great and the runtime short even after 
a full charge. Recently, the Buster’s RPMs would start to fall rapidly after a 
few seconds of use and I suspected a failing battery pack. I hate to throw out 
perfectly good used cordless machines and it’s always the batteries that fail 
long before the mechanics do.  

The Buster says 14.4 volts on the side so I knew 
there was a huge and heavy NiCd or NiMh pack 
sitting in that fat rear fuselage. At 14.4 volts, that 
would qualify it for some sort of Lithium pack, LiPo 
or some of those cool new Li-ion 3.7v cells. I had 
already replaced the dead NiCd 5S packs in my 
shop’s Makita cordless drills with 2S 18650 Li-ion 
cells, and they now are always ready to go and run 
forever. 
I poured myself a cold Porter and started to 
disassemble the unit to check out that old failing 
battery pack. The included photos show the 
internals and the wiring changes I made. It’s an 
easy mod as long as you don’t short the new pack 
while mod’ing the wires.
The Buster comes apart easily (warranty voided!), 
and I found a huge plastic battery box inside with a 
12S 1500mah NiCD pack inside. 
I knew that some of the cells might be bad, so I 
trickle charged it for 8 hours, and then tested the 
voltage of each cell. I was looking for any single 
cell reading at or under 1.1v. Two cells were at 
1v, and another was at 1.1v. The rest of the cells 
measured at around 1.2v, though I suspected 
some memory effects over time had also reduced 
the pack capacity. The missing voltage of three 
cells really killed the units suction. Total weight of 
the NiCd pack was 19 oz.- 538 grams!
For a replacement battery I picked out of my LiPo 
safe a used 40C rated Thunder Power 4S 2200 
Lipo which was no longer flight worthy, but still 
good enough for a low amp draw application. 

Paul Naton / Radio Carbon Art Productions, 
pnatonrca@gmail.com, http://www.radiocarbonart.com
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You could use a 4S Li-ion or Li-Fe pack for this application/hack 
as well. This battery had the old TP style balance connector with 
very short wires, so it was easier to plug the balance connector 
into a spare TP to JST-XH adapter board instead of soldering 
a more modern JST port on it. Balance charging is required to 
keep the cells healthy in this application. The XTC 60 connector 
hooks right to any of my chargers and I can charge the pack in 
minutes instead of hours. Nice. Total battery weight was now 
just 10 oz. - 283 grams!
The internal wiring is easy to figure out. There is a DC brushed 
motor connected to a plastic holder that has traces to the main 
power switch and the charging circuit PCB. I cut the battery box 
out, and removed the charging and power LED indicator light 
and PCB board from the top of the main body. The PCB board 
has two wires to the motor, just disconnect them. You can keep 
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the PCB board in place as long as you disconnect the wires to 
the motor, but I wanted to run the charging wires through this 
hole so I discarded this part.
I next lengthened the two main motor power wires from the 
plastic holder a few inches with a solder splice which gave me 
some working slack. The center wire on the plastic wire holder 
can be cut or disconnected. You can also disconnect and 
remove the metal charging contact tabs at the bottom of the 
unit.
The positive (+) and negative (-) wires need to be spliced into 
the main battery wire for motor power.  Do each wire separately 
for safety, do not short the battery wires! 
I cut a small amount of the wire insulation from the negative 
battery wire first, then soldered the negative (-) motor wire to the 

negative (-) battery wire. Some tape insulated the splice. I then 
did the same for the positive (+) wires.  
With the motor wired to the battery, you can then test the switch, 
which should be in the OFF position when soldering power 
wires. The motor should turn on. 
You will need to run the main battery power wires and the 
charge balance connectors outside the unit for charging. I was 
lazy and used the hole from the LED light and PCB under the 
handle to exit the wires. You can cut or drill a hole just about 
anywhere in the vac’s body to exit the wires.
The freshly charged 4S Lipo outputs a solid 16+ volts to the 
motor, about 1.5 volts higher than the best the NiCds could give. 
The suction is noticeably better at the higher RPM’s and there is 
no voltage sag or motor over-heating even after many minutes 
of run time. 
Once the RPMs start to noticeably drop, its time to recharge, 
you don’t want to drain any Lithium pack to zero. You can use 
your Lipo voltage meter to check remaining capacity just like 
with your powered RC planes.
Dust Buster models vary, but most older models are likely 
to have NiCd packs and should be easy to modify with new 
batteries. 
Newer Dust Buster models are available with Lithium batteries 
so just buy one of those for your shop. 
This was an easy hack and this useful tool will be running for 
many years to come and I won’t feel guilty feeding it carbon dust 
until it dies a natural death. 
**Use any lithium battery with caution and charge them properly. 
NiCd batteries should be recycled at an authorized location. 
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Last month (September 2009) on Flying Giants, Rod Ford 
published a picture of his balsa stripper on his Jungman “Git-R-
Done” building Forum. It was quite the neatest unit I had seen, so 
I followed it up and found it had been designed by David Plumpe, 
who lives on Lake Keowee in upstate South Carolina. 

I emailed Dave for information and permission to publish which he 
very kindly agreed to. He tells me...

“I’ve been building model planes for at least 60 years, originally 
with painful double-edge razor blades, then X-acto knives, then 
unsatisfactory store-bought strippers, and finally this stripper. 
Actually, I use the fence more than the stripper, to cut my own 
leading and trailing edges, spars, etc. I certainly don’t claim 
credit for inventing the inclined plane or even for using it for fine 
adjustment in a balsa stripper/fence, but it did take me a few years 
to finally get a round tuit to work out the geometry I was happy 
with.

“I’m a retired electronics engineer (instrumentation for Navy ship 
research) and enjoy electronics, metalworking, boating, and lots 
of other stuff, but modeling has been a lifelong hobby and I can’t 
seem to shake it.

“I’m primarily an RC modeler. Mostly engines from .049ci to .60ci, 
but in recent years I’ve been doing some electrics.” 

Balsa Stripper & Fence
May 2009 David Plumpe plumpe@mindspring.com

Balsa Stripper

Balsa Fence

Balsa Stripper & Fence
May 2009 David Plumpe plumpe@mindspring.com

Balsa Stripper

Balsa Fence

Balsa Fence & Balsa Stripper
Barrie Russell
Model Flying Hawkes Bay, New Zealand
<http://www.mfhb.org.nz>
07 October 2009
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The following is excerpted from 
<https://www.rcgroups.com/forums/
member.php?u=15730> 
Dave Plumpe produced a PDF which 
includes both the explanatory text and 
the plans for both the Balsa stripper and 
Balsa Fence. We’ve uploaded it to the 
RCSD web site where it’s available at 
<http://www.rcsoaringdigest.com/
Supplements/BalsaFenceStripper.pdf>

The balsa stripper is made of scraps of 
Melamine shelving, iron-on edging, and 
a small piece of hardwood for the blade 
arm. It’s 8-1/2” wide, uses a 1:4 incline (1” 
lateral motion for 4” along hypotenuse), 
and cuts widths from 0 to 1”. I use it for 
up to 1/8” medium balsa.

The tablesaw fence is made of a sink 
cutout from a laminated-surface kitchen 
countertop, a piece of 1/8” hardboard, 
and a hardwood strip for the cleat. It’s 
18” long, has a 1:8 incline, and also cuts 
0-1” widths. I use it with a 7-1/4” hollow-
ground veneer blade (DeWalt DW3326) 
and homemade zero-clearance table 
insert, for anything thicker than 1/8” 
or harder than balsa, leading & trailing 
edges, and really accurate cuts. With 
my 1950 Craftsman table saw I typically 
get cuts accurate to within a couple 
thousandths (even closer after a test cut) 
and smooth as a baby’s bottom.

(Question by “Norm Furutani”): 

On the knife stripper, you say captured 
blade-tip. Is the tip of the blade sitting in 
a small drilled hole?

What is the kerf on the saw blade? This 
is an all steel blade, not carbide?

Reply: Yes, the #11 blade tip is jammed 
into a 1/16” hole in the base. After 
assembling the wood parts, I slid the 
blade down to touch the base, tapped it 
to make a mark, then drilled the hole.

The tablesaw blade cuts a kerf of about 
0.07”. It’s hollow-ground steel, not 

I recently made a couple of tools for 
cutting balsa strips which I thought 
I’d pass on to the group. One is a 
standalone stripper based on the inclined 
fence and captured blade-tip approach. 
The other is a precision fence for my 
tablesaw. They’re both accurate and very 
easy to set. 
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carbide-tipped. Steel can take a sharper 
edge than carbide, so should give a 
cleaner cut, ‘though I haven’t tried a 
7-1/4” carbide veneer/plywood blade 
on balsa. I’ve been using this blade for 
several years and it seems as sharp as 
ever.

(Question by “littlewing78”):

Is there a certain angle you cut your 
fixtures at? Do the measurements stay 
accurate to the ruler you have on there or 
do you need to adjust it and mark your 
own?

Reply: The angle is the arcsine of the 
slope (the angle whose sine is the slope). 
For the slitter the slope is 1/4, so the 
angle is 14.4775 degrees and for the 
tablesaw fence the slope is 1/8, so the 
angle is 7.1808 degrees.

That’s the fancy description. I don’t have 
a protractor that accurate, so I accurately 
draw a line 1” in from the edge of a 
piece of paper and parallel to that edge, 
then find a point on that line that’s 4” (or 
8”) from the corner. Draw a sloped line 
connecting that point with the corner. 
That triangle is the proper slope and I 
use that for cutting the incline. Does that 
make sense? If not, I’ll draw something 
up. 

For every 4 (or 8) inches of travel along 
the slope of the incline, you want 1” of 
distance change between the blade and 
fence.

Actually, you can make it any slope 
you want, as long as you can make an 
appropriate scale. I find it easier to have 
a scale that’s a neat multiple (4 or 8) of a 
standard ruler. 

Reply by “tommyeflight89”:

It should just be a function of the angle 
of the triangle he has made. Any angle 
would work, with the smaller one giving 
you much more resolution.

Original David Plumpe document available for downloading from: 
<http://www.rcsoaringdigest.com/Supplements/BalsaFenceStripper.pdf>
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(WASHINGTON • May 9, 2017) 
– Researchers at the U.S. Naval 
Research Laboratory (NRL), Vehicle 
Research Section and Photovoltaic 
Section are building on the proven 
concept of autonomous cooperative 
soaring of unmanned aerial vehicles 
(UAVs). Their research investigates 
the presence of solar photovoltaics 
(PV) to the cooperative autonomous 
soaring techniques, which enables 
long endurance flights of unmanned 
sailplanes that use the power of the Sun.

The Solar Photovoltaic and Autonomous 
Soaring Base Program and the U.S. 
Marine Corps’ Expeditionary Energy 
Office (E2O) want to improve the ability 
of unmanned platforms to support 
a 24-7 information, surveillance, and 
reconnaissance (ISR) mission. By doing 
so, the warfighter will greatly benefit 
because it will reduce the amount of 
batteries or fuel they must carry into 
battle, and improve the availability of 
continuous coverage of ISR assets. 

NRL Tests Autonomous “Soaring with Solar” Concept
<https://www.nrl.navy.mil/media/news-releases/2017/NRL-Tests-Autonomous-Soaring-with-Solar-Concept>

Holding the photovoltaic (PV) UAV based on the SBXC sailplane, are members of the 
“Solar-Soaring” research flight crew (l-r) Dan Edwards and Trent Young (not shown: 
Chris Bovais, Sam Carter, Matthew Kelly, and Dave Scheiman). (U.S. Naval Research 
Laboratory)



July 2017 33

“NRL has twice flown our solar UAV 
[based on the SBXC sailplane] over 
10 hours using a combination of solar 
photovoltaics and autonomous soaring 
as part of the ‘solar-soaring’ research 
program,” said Dr. Dan Edwards, 
aerospace engineer. “This research is 
investigating the value of combining 
autonomous soaring algorithms and 
solar photovoltaics for capturing energy 
from the environment to extend flight 
endurance and mission operations of an 
aircraft.”

A photovoltaic array, custom built in 
NRL’s Vehicle Research Section and 
Photovoltaic Section, is integrated into 
the center wing panel of the PV-SBXC 
aircraft as a drop-in replacement to the 
original wing. A power management and 
distribution system converts the power 
from the solar arrays into direct current 
(DC) voltage, which the electric motor 
can use for propulsion, or recharge a 
‘smart battery.’

Additionally, an autonomous soaring 
software algorithm — that would typically 
monitor the local vertical winds around 
the aircraft — commands the aircraft 
to orbit in any nearby updrafts, very 
similar to soaring birds. However, the 
algorithm was disabled for the two 
solar flights in order to assess the solar-
only performance. Passive soaring 
— meaning no specific maneuvers are 
attempted to catch thermals — was 

still allowed, to let the aircraft turn the 
motor off if altitude increased because 
of an updraft along the aircraft’s pre-
defined flight path. The autonomous 
soaring software was tested extensively 
in previous flight demonstrations in late 
October 2015.

The UAV with solar arrays built at NRL 
using SunPower Inc. solar cells, flew 
for 10 hours, 50 minutes on October 14, 
2016. Takeoff occurred at 7:20 a.m. at 
95 percent battery state of charge and 
landing occurred at 6:10 p.m. with the 
battery at 10 percent state of charge. 
Thermal activity was very good in the 
middle of the day and 40 percent of 
the flight was spent with the motor off, 
and the solar array partly recharged the 
battery while the motor was off.

The UAV equipped with solar wings 
incorporated PV arrays from Alta 
Devices, Inc. It flew for 11 hours, 2 
minutes on April 19, 2017. Takeoff 
occurred at 7:46 a.m., approximately 
an hour after sunrise, with the battery’s 
state of charge at 90 percent. Landing 
occurred at 6:48 p.m., approximately an 
hour before sunset, with the battery’s 
state of charge at 26 percent. Thermal 
activity was very weak and almost all of 
the flight was spent running the motor. 
Near solar noon, the solar array provided 
sufficient power to cruise on solar power 
alone.

The power management system for both 
flights was provided by Packet Digital, 
Inc., as part of a grant from the North 
Dakota Renewable Energy Council.

“The experiments confirm significant 
endurance gains are possible by 
leveraging thermal updrafts and incident 
solar radiation, rather than ignoring these 
free sources of energy,” Edwards said. 
“Future testing will focus on quantifying 
the trade space between improvements 
in solar cell efficiency and combining 
with autonomous soaring for improved 
solar-recharging.”

The Vehicle Research Section at 
NRL conducts research to develop 
technologies for autonomous, affordably 
expendable, unmanned systems that 
carry a wide variety of payloads for 
numerous mission scenarios. The 
Section is composed of aeronautical, 
aerospace, electrical, and mechanical 
engineers, scientists, and technicians 
dedicated to advancing the state-of-the-
art in unmanned systems technology.

The Photovoltaics Section at NRL 
conducts research to develop 
photovoltaic (solar cell) technologies 
to enable logistics free, renewable, 
portable, power sources for the 
warfighter. The Section is composed 
of physicists, electrical engineers, and 
chemists dedicated to advancing the 
state-of-the-art in PV power sources and 
systems.
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The U.S. Naval Research Laboratory provides the advanced 
scientific capabilities required to bolster our country’s 
position of global naval leadership. The Laboratory, with 
a total complement of approximately 2,500 personnel, is 
located in southwest Washington, D.C., with other major 

sites at the Stennis Space Center, Miss., and Monterey, 
Calif. NRL has served the Navy and the nation for over 90 
years and continues to advance research further than you 
can imagine. For more information, visit the NRL website 
<https://www.nrl.navy.mil/>.

Researchers at the 
U.S. Naval Research 

Laboratory (NRL), Vehicle 
Research Section and 

Photovoltaic Section 
tests a photovoltaic (PV) 

UAV [based on the SBXC 
sailplane], shown on 

takeoff at sunrise, October 
14th, 2016. The research 
is to investigate the value 

of combining autonomous 
soaring algorithms and 
solar photovoltaics for 

capturing energy from the 
environment to extend the 

endurance of an aircraft. 
(U.S. Naval Research 

Laboratory)
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Using mathematics and modeling to understand the flow 
physics of aircraft wings undergoing highly unsteady 
maneuvers.

The main objective of this research was to better understand 
the flow physics of aircraft wings undergoing highly unsteady 
maneuvers. Reduced-order models play a central role in this 
study, both to elucidate the overall dynamical mechanisms 
behind various flow phenomena (such as dynamic stall 
and vortex shedding), and ultimately to guide flight control 
design for vehicles for which these unsteady phenomena are 
important.

Unsteady phenomena are of increasing interest to the Air Force, 
as lightweight unmanned air vehicles become more prevalent. 
With increasingly smaller and lighter vehicles envisioned in the 
future, understanding unsteady aerodynamics will become 
even more important, in order to design control systems 
that can respond to severe gusts, or perform highly agile 
maneuvers. The flight of small, highly maneuverable aircraft, 
whether biological or man-made, is greatly impacted by 
unsteady aerodynamic effects, which can be either beneficial 
or detrimental to flight. Accurate understanding of such effects 
can allow for the design of aircraft that are more efficient, 
responsive, and robust.

With advances in both experimental techniques and equipment, 
and computational power and storage capacity, researchers in 
fluid dynamics can now generate more high-fidelity data than 
ever before. The presence of increasingly large data sets calls 
for appropriate data analysis techniques, that are able to extract 
tractable and physically relevant information from the data. In 
particular, a much-desired goal in fluid mechanics, and indeed 
many other fields, is to obtain simple models that are capable 
of predicting the behavior of seemingly complex systems. Low-
dimensional models can not only improve our fundamental 
understanding of such systems, but are often required for the 
purpose of efficient and accurate prediction, estimation and 
control.

Broadly speaking, one can obtain low-dimensional information 
about a system (whether it be in the form of a reduced-order 
model, or simply spatial modes corresponding to certain 
energetic or dynamic characteristics) in numerous ways, 
potentially using some combination of data collected from 
simulations and experiments, and theoretical knowledge of 
the system, such as the governing partial differential equations 
(PDEs).

Purely data-driven methods can include those developed 
particularly for fluids applications, such as the dynamic mode 

Identifying the Flow Physics and 
Modeling Transient Forces on 

Two-Dimensional Wings 
Aerospace & Defense Technology 

<http://www.aerodefensetech.com/component/content/article/1321-adt/tech-briefs/aerospace/26832-afrl-0250>
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decomposition (DMD), or those which are appropriated from 
other communities, such as the eigensystem realization 
algorithm (ERA), which was first applied to study spacecraft 
structures, but has more recently been appropriated to 
model a wide range of fluids systems.

Dynamic mode decomposition allows for the identification 
and analysis of dynamical features of time-evolving 
fluid flows, using data obtained from either experiments 
or simulations. In contrast to other data-driven modal 
decompositions such as the proper orthogonal 
decomposition (POD), DMD allows for spatial modes to be 
identified that can be directly associated with characteristic 
frequencies and growth/decay rates. Following its 
conception, DMD was quickly shown to be useful in 
extracting dynamical features in both experimental and 
numerical data. It has subsequently been used to gain 
dynamic insight on a wide range of problems arising in fluid 
mechanics and other fields.

One of the major advantages of DMD over techniques such 
as global stability analysis is that it can be applied directly 
to data, without the need for the knowledge or construction 
of the system matrix, which is typically not available for 
experiments. For this reason, analysis of the sensitivity of 
DMD to the type of noise typically found in experimental 
results is of particular importance.

This work was done by Clarence W. Rowley and David R. 
Williams of Princeton University for the Air Force Research 
Laboratory. 

Original AFRL-0250 can be downloaded from:  
<http://www.rcsoaringdigest.com/Supplements/AFRL-0250.pdf>
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Chapter 1

Introduction

The main objective of the work described in this report is to better understand the flow physics
of aircraft wings undergoing highly unsteady maneuvers. Reduced-order models play a central role
in this study, both to elucidate the overall dynamical mechanisms behind various flow phenomena
(such as dynamic stall and vortex shedding), and ultimately to guide flight control design for
vehicles for which these unsteady phenomena are important.

Unsteady phenomena are of increasing interest to the Air Force, as lightweight unmanned air
vehicles become more prevalent. With increasingly smaller and lighter vehicles envisioned in the
future, understanding unsteady aerodynamics will become even more important, in order to design
control systems that can respond to severe gusts, or perform highly agile maneuvers.

Our approach builds upon recent advances in understanding the dynamics of these unsteady
flows, and uses state-of-the-art techniques, both for measuring these phenomena in experiments
(using an unsteady wind tunnel at IIT), and for analyzing the data and developing reduced-order
models (using techniques such as the Eigensystem Realization Algorithm and variants of Dynamic
Mode Decomposition, being developed at Princeton).

The studying of aerodynamics and fluid mechanics predate the birth of the scientific method
itself. From the initial musings of Aristotle and Archimedes, to the sketches of Leonardo Da Vinci,
to George Caley’s conception of a modern airplane configuration in 1799. Yet, in spite of this long
history, and the fact that the underlying governing equations of viscous fluid flow being known for
hundreds of years, there is still much to learn. For example, in many respects we are still catching
up to the mastery exhibited by biological swimmers and fliers, in terms of maneuverability and
efficiency. This “unfinished business” is not by any means due to a lack of imperative. Indeed,
reductions in aerodynamic drag on cars, trucks, airplanes and ships can lead to billions of dollars in
fuel savings, and significant reductions of CO2 emissions, to speak nothing of the enhanced safety
and maneuverability that would come with, for example, a more comprehensive understanding of
the dynamics of aircraft in deep stall.

With advances in both experimental techniques and equipment, and computational power and
storage capacity, researchers in fluid dynamics can now generate more high-fidelity data than ever
before. This is crucial to advancing the field as a whole, since all but the most idealized, simple
systems cannot be fully understood by analytical deductions alone. Moreover, advances in mate-
rials, manufacturing, and the miniaturization of processors allow for new questions to become of
practical interest. This is not to suggest that the field of fluid dynamics and aerodynamics are now
confined to the realms of data science. Indeed, progress is made by combining the insight attained
from study of the fundamental equations with the additional dimension of large data. Indeed, ob-
taining the right data relies on understanding of the physical system. Beyond this, however, data

1
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collection should also be informed by a proper understanding of the capabilities and limitations of
the algorithmic tools that are required to assist in data analysis.

The presence of increasingly large data sets necessitates the use of such post-processing tech-
niques that are able to extract tractable and physically relevant information from the data. This
report considers methods to extract pertinent information and models from data obtained from flu-
ids simulations and experiments. While the focus is on unsteady aerodynamic systems, specifically
pitching airfoils, the techniques used and developed are applicable to a wider range of applications,
both within and outside of fluids systems.

1.1 Unsteady aerodynamics

The flight of small, highly maneuverable aircraft, whether biological or manmade, is greatly im-
pacted by unsteady aerodynamic effects, which can be either beneficial or detrimental to flight.
Accurate understanding of such effects can allow for the design of aircraft that are more efficient,
responsive, and robust.

The need to account for unsteady effects has been recognized since soon after the breakthrough of
powered manmade flight, in the classical works of Wagner [155], Theodorsen [142], and Garrick [50].
Indeed, many failed attempts at flight can probably be attributed to a severe lack of understanding
of how to utilize such effects. These classical models give significant insight into the fundamental
flow physics associated with unsteady flight, such as relative contributions to lift of the added mass,
quasi-steady bound circulation, and wake vortices. For example, the Theodorsen model gives the
relationship between the airfoil kinematics (α, α̇, and α̈ and the lift coefficient by:

CL =
π

2

(
α̇− 1

2
aα̈

)
+ 2π

(
α+

1

2
α̇

(
1

2
− a

))
C(k), (1.1.1)

where a is a parameter that defines the pitch axes, with a = −1 and +1 corresponding to pitching
about the leading and trailing edge of the airfoil, respectively. k = πfc

U is the reduced frequency,
and C(k) is the Theodorsen function, which governs the interaction between the shed vorticity in
the wake and the circulatory lift force. While such models can be quantitatively accurate for cases
of attached flow where viscous effects are negligible, they quickly lose validity when dealing with
separated flows, which are often encountered in the extreme motions that are possible for birds,
insects, and micro and unmanned aerial vehicles (MAV and UAV). It is precisely in these extreme
cases that accurate predictive models are essential to prevent catastrophic failure and ensure ongoing
successful flight. While more accurate predictions can be attained from high-fidelity simulations,
the computational cost typically prohibits the direct use of such simulations for real–time prediction
and control.

Biological examples such as insects [18, 120, 156] and birds [153] have seemingly evolved to take
advantage of the high transient lift force that can be generated due to the formation of a leading
edge vortex (LEV) during rapid pitch- up motion, for example. While these give motivating ex-
amples of the advantages of accurate understanding of unsteady aerodynamic effects, the preferred
wing kinematics arising from evolution is highly specific and coupled to the geometry and other
physiological features of the animal. Indeed, the characteristics of unsteady aerodynamic effects,
particularly for separated flows, seem to be quite sensitive to both the geometry [79] and Reynolds
number [166] of the airfoils. Studies into low Reynolds number flow over stationary [166, 4, 165]
and pitching [154, 1, 131, 30, 80] symmetric airfoils have revealed, for example, complex effects
associated with the stability and separation of the suction surface boundary layer, which are again
highly sensitive to Reynolds numbers. These observations motivate the development of general
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modeling procedures that can be easily applied to a range of parameter cases. In addition, it is
desirable for such methods to be sufficiently general such that they can be applied to more realistic
aircraft configurations, rather than just airfoils. As an example, such data driven modeling was
considered for the case of accurate prediction and control of lift for a low Reynolds number pitching
airfoil [22, 23], using the eigensystem realization algorithm [72] (ERA) and observer/Kalman filter
identification [74] (OKID). There has also been a significant amount of work in terms of nonlinear
modeling, ranging from low order state- space models formulated from theoretical considerations
[54], to Volterra series models that have been used to model a range of unsteady aerodynamic and
aeroelastic phenomena [132, 85, 11].

1.2 Data-driven modeling

With advances in both experimental techniques and equipment, and computational power and
storage capacity, researchers in fluid dynamics can now generate more high-fidelity data than ever
before. The presence of increasingly large data sets calls for appropriate data analysis techniques,
that are able to extract tractable and physically relevant information from the data. In particular, a
much-desired goal in fluid mechanics, and indeed many other fields, is to obtain simple models that
are capable of predicting the behavior of seemingly complex systems. Low-dimensional models can
not only improve our fundamental understanding of such systems, but are often required for purpose
of efficient and accurate prediction, estimation and control. Broadly speaking, one can obtain low-
dimensional information about a system (whether it be in the form of a reduced-order model, or
simply spatial modes corresponding to certain energetic or dynamic characteristics) in numerous
ways, potentially using some combination of data collected from simulations and experiments, and
theoretical knowledge of the system, such as the governing partial differential equations (PDEs).

Purely data-driven methods can include those developed particularly for fluids applications,
such as the dynamic mode decomposition (DMD) [125, 126], or those which are appropriated from
other communities, such as the eigensystem realization algorithm (ERA) [82, 72], which was first
applied to study spacecraft structures, but has more recently been appropriated to model a wide
range of fluids systems [25, 2, 68, 69, 22, 23, 15, 67, 49].

Dynamic mode decomposition allows for the identification and analysis of dynamical features of
time-evolving fluid flows, using data obtained from either experiments or simulations. In contrast
to other data-driven modal decompositions such as the proper orthogonal decomposition (POD),
DMD allows for spatial modes to be identified that can be directly associated with characteristic
frequencies and growth/decay rates. Following its conception, DMD was quickly shown to be
useful in extracting dynamical features in both experimental and numerical data [125, 126]. It
has subsequently been used to gain dynamic insight on a wide range of problems arising in fluid
mechanics [e.g., 119, 128, 127, 100, 129, 43, 58, 70, 83, 93, 55, 123, 45] and other fields [e.g., 59].

DMD has a strong connection to Koopman operator theory [81, 88], as exposed in [119], and
further reviewed in [89], which can justify its use in analyzing nonlinear dynamical systems. Since
its original formulation, numerous modifications and extensions have been made to DMD. Chen
et al. [27] highlights the connection that DMD shares with traditional Fourier analysis, as well
as proposing an optimized algorithm that recasts DMD as an optimal dimensionality reduction
problem. This concept of finding only the dynamically important modes has also been considered
in subsequent works of [164] and [71]. All of these works are motivated, in part, by the fact that
by default DMD will output as many modes as there are pairs of snapshots (assuming that the
length of the snapshot vector is greater than the number of snapshots), which is arbitrary with
respect to the dynamical system under consideration. In reality, one would prefer to output only
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the modes and eigenvalues that are present (or dominant) in the data. When the data is corrupted
by noise (as will always be the case to some degree, especially for experimental data), this process
becomes nontrivial, since noisy data might have a numerical rank far larger than the dimension of
the governing dynamics of the system. Further to this, one cannot expect to have a clean partition
into modes that identify true dynamical features, and those which consist largely of noise.

Simple ways of achieving this objective can involve either first projecting the data onto a smaller
dimensional basis (such as the most energetic POD modes) before applying DMD, or by choosing
only the most dynamically important DMD modes after applying DMD to the full data. One
can also truncate the data to a dimension larger than the assumed dimension of the dynamics,
and then apply a balanced truncation to the resulting dynamical system to obtain the desired
reduced order model. This approach is sometimes referred to as over-specification in the system
identification community [see, e.g., 75]. Keeping a higher dimension of data than that of the assumed
dynamics can be particularly important for input-output systems that have highly energetic modes
that are not strongly observable or controllable [112]. Ideally, any algorithm that restricts the
number of DMD modes that are computed should also additionally be computationally efficient.
A fast method to perform DMD in real time on large datasets was recently proposed in [62],
while a library for efficient parallel implementation of number of common modal decomposition
and system identification techniques is described in [16]. Sayadi and Schmid [122] also gives an
explicit implementation of DMD for parallelized computation. One can also achieve computational
speedup by incorporating efficient methods to compute singular value decompositions, typically the
computational bottleneck in DMD, to speed up the computation []

One of the major advantages of DMD over techniques such as global stability analysis, for exam-
ple, is that it can be applied directly to data, without the need for the knowledge or construction of
the system matrix, which is typically not available for experiments [126]. For this reason, analysis
of the sensitivity of DMD to the type of noise typically found in experimental results is of particular
importance. The effects of noise on the accuracy of the DMD procedure was systematically inves-
tigated in the empirical study of [44], for the case of a synthetic waveform inspired by canonical
periodic shear flow instabilities. More recently, [101] have extended this type of analysis to more
complex data with multiple frequencies, as might be found in typical fluids systems.

An notable limitation of the methods mentioned so far is that (when considered in the context
of data-driven reduced-order modeling techniques) they are linear, in the sense that the reduced
order model that is identified is in the form of a linear system of ordinary differential equations
(ODEs). While there have been a number of examples of nonlinear data-driven modeling techniques
used in fluids applications [85, 102, 104, 52, 11, 37, 77, 60, 39, 24], their widespread use has been
more limited, and the underlying theory is less established, than linear techniques. More details
concerning the application of data-driven modeling techniques in fluid mechanics can be found in
recent review articles [21, 113].

Perhaps the most common method to obtain a nonlinear reduced order model for fluids systems
comes via a projection of the governing equations onto a low-dimensional basis that is optimal for
capturing the energy of the data, i.e., the proper orthogonal decomposition (POD) [86, 17, 66], a
procedure referred to as Galerkin projection. Galerkin projection (GP) has been used to extract
models for many different fluids systems, a non-exhaustive list includes flow past a cylinder at low
Reynolds number [41, 96, 95], grooved channels [41] the wall region of turbulent boundary layers
[6, 103], flat plate boundary layers [111], turbulent plane Couette flow [91, 134], turbulent pipe flow
[19] cavity oscillations [116, 115], mixing layers [110, 150, 13], and compressible flows [118]. One
significant drawback of GP models is that they ignore modes that are low in energy, but are required
for the dissipation of energy in the full system. A number of modifications have been proposed to
address this concern, as well as other issues with such models. Aubry et al. [6] and Podvin [103]
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use an eddy viscosity term that accounts for energy dissipated into unmodeled modes, Östh et al.
[99] investigate a hierachy of eddy viscosity formulations, while Wang et al. [157, 158] incorporate
LES closure modeling strategies. Refs. [35] and [36] summarize a number of calibration techniques
that can be used to improve the accuracy of Galerkin models, and also discuss the various ways in
which the error of such models can be quantified. Ref. [12] employs a subspace rotation technique
to stabilize the models, which, unlike other calibration techniques, maintains consistency with the
original governing equations. Ref. [13] imposes constraints to balance the turbulent kinetic energy
of the resulting model. All of these modifications of Galerkin projection increase the “data-driven”
nature of the method. Ref. [97] gives an in-depth summary and analysis of many issues, variations,
progress, and open problems on the topic of Galerkin projection models, while [84] gives a clear
expository introduction of the main ideas in Galerkin projection, with examples.

While we mentioned above that DMD could be classified as a “linear” method, connections
between the DMD algorithm and the Koopman operator [119, 89] give promise that it can ultimately
be used to model and understand nonlinearities. The Koopman operator [81] gives a means of
representing a finite-dimensional, nonlinear system as an infinite dimensional linear system, and
DMD gives a finite-dimensional approximation to this operator.

In particular, an extension of DMD that potentially allows for better representation of non-
linear data has also recently been proposed [160], and although the computational costs increase
dramatically with the dimension of the system, a kernel method described in [159] reduces the cost
to be comparable to standard DMD.

1.3 Organization and contributions

Following this introductory chapter, Chapter 2 presents a summary of key concepts and techniques
in data-driven modeling of fluid systems, as well as presenting some results that, besides being of
some independent interest, will motivate the research directions taken in the subsequent chapters.
Broadly speaking, Chapters 4 and 3 focus specifically on the application pitching airfoils, while 5
and 6 focus on data-driven modeling techniques, particularly extensions and improvements to DMD
and their application to fluids systems. More precisely, the report includes the following sections:

Chapter 3 obtains models to predict the pressures and forces on a rapidly picking airfoil. This is
one of the first applications to experimental data of a recently developed variant of DMD to allow for
the identification of systems that contain inputs (e.g., systems that are being controlled externally in
some manner) [105]. We show that this modeling approach is convenient for constructing “switched
models”, whereby one can predict the behavior of a nonlinear system by switching between a
family of linear models. In particular, the “DMD with inputs” method gives models for which the
coordinates of the models remain consistent with each other, which eliminates complications and
ill-conditioning that has been observed when using alternate methods [38]. This modeling approach
allows for the formulation of a switched model that remains accurate over a wide range of angles
of attack, ranging from attached to fully separated flow. The experiments and subsequent analysis
were performed with Nicole Schiavone, an undergraduate working in Prof. Rowley’s lab in summer
2014. Material in this chapter is based on the conference paper:

• Scott T M Dawson, Nicole K Schiavone, Clarence W Rowley, and David R Williams. A data-
driven modeling framework for predicting forces and pressures on a rapidly pitching airfoil.
In 45th AIAA Fluid Dynamics Conference, page 2767, 2015.

Chapter 4 explores a phenomena that is identified in Chapter 2: Namely that airfoils under-
going low-amplitude sinusoidal pitching motion generate enhanced lift when pitching occurs at a
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preferred frequencies. A systematic parameter sweep over the pitching frequency, amplitude, and
base angle of attack is conducted, with the mean and frequency content of the forces analyzed. In
addition, the flow fields are studied using DMD. Material in this chapter is based on the conference
paper:

• Scott TM Dawson, Daniel C Floryan, Clarence W Rowley, and Maziar S Hemati. Lift en-
hancement of high angle of attack airfoils using periodic pitching. In 54th AIAA Aerospace
Sciences Meeting, page 2069, 2016.

Chapter 5 shows how a recently developed extension to DMD can be utilized to obtain nonlin-
ear reduced order models for fluids systems. We modify the extended DMD algorithm to include a
Tikhonov regularization step, which is found to give improved results for the purposes of nonlinear
system identification. The method is demonstrated on the canonical example of flow past a circular
cylinder, for data starting near the unstable equilibrium solution and converging to the periodic
vortex shedding limit cycle. It is demonstrated that this approach can be superior to classical
POD-Galerkin projection, particularly in cases where the data is noisy, is from a limited spatial
region, is not spatially resolved, or is only collected over a short time window. Material in this
chapter is contained in the paper:

• Scott T. M. Dawson and Clarence W. Rowley, Nonlinear reduced-order models of fluids
systems using extended dynamic mode decomposition, In preparation for Theoretical and
Computational Fluid Dynamics, 2016.

Some of the results presented in Chapter 5 are also used in an upcoming review paper:

• Clarence W. Rowley and Scott T. M. Dawson. Model reduction for flow analysis and control.
Annual Review of Fluid Mechanics, 49(1), 2017.

Chapter 6 analyzes the effect of noise of DMD. As well as giving an explanation for a previously
identifies sensitivity to noisy data, three variants of the DMD algorithm are proposed, all of which
perform better on noisy data. This work was performed with Maziar Hemati and MatthewWilliams,
and is published in the following paper:

• Scott T. M. Dawson, Maziar S. Hemati, Matthew O. Williams, and Clarence W. Rowley.
Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposi-
tion. Experiments in Fluids, 57(42):1?19, 2016.

In addition to the publications listed above, Chapter 2 uses some material from the paper:

• Steven L Brunton, Scott T M Dawson, and Clarence W Rowley. State-space model identifica-
tion and feedback control of unsteady aerodynamic forces. Journal of Fluids and Structures,
50:253?270, 2014.

Effort is made to keep notation consistent throughout this report; however, on occasion notation
changes between chapters, in attempt to uphold existing conventions in the relevant fields. While
each of these chapters is largely self contained, we present in Chapter 2 underlying preliminaries
that are broadly relevant across all sections of this thesis.
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Chapter 2

Background and motivating results

This section will introduce some concepts that are relevant to, and will be used and referred to
on a number of occasions throughout this report. Section 2.1, presents a range of algorithms that
have seen common use for identifying models and features of fluids systems. Relevant literature
and applications of such methods are discussed in detail in Section 1.2.

Of each of these methods, that which is utilized more predominantly in this report is DMD,
which is featured to various extents in each of chapters 3, 4, 5, and 6. Additionally, Galerkin pro-
jection, which utilizes POD modes as an efficient basis for approximating the governing equations,
is used in Chapter 5 as a comparison to the EDMD method of nonlinear system identification.
We include a presentation of ERA both since it is used in Section 2.2, and to highlight the simi-
larities with DMD; similarities which exist between numerous data-driven linear modeling/system
identification algorithms.

2.1 Data-driven modeling of fluids systems

2.1.1 Proper orthogonal decomposition

The goal of the proper orthogonal decomposition (POD) is to obtain a set of empirical spatial
modes that optimally represent a given dataset from an energetic standpoint. Assume that we can
decompose the dynamics of some system u(x, t) (which could be the time-varying velocity field of
a fluid, say) by

u(x, t) = u0(x) +

∞∑
i=1

ui(x)ai(t), (2.1.1)

where u0(x) is some fixed (often average) data, and {ui(x)}∞i=1 are a set of orthonormal basis
functions (modes). POD takes these modes to be those which successively capture the most energy
of the velocity field. Each POD mode ui satisfies the integral

∫

Ω
Ri,j(x, x

′)ui(x
′)dx′ = λui(x),

where Ri,j(x, y) = E[ui(x)uj(y)], with E being the expectation. As indicated by Eq. (5.2.1),
POD is normally performed after first subtracting the mean (or perhaps an equilibrium point)
from the data. This approach has the advantage that u0 satisfies the required non-homogeneous
boundary conditions, meaning that all other modes ui will satisfy homogenous boundary conditions,
so any linear combination of modes of the form given by Equation (5.2.1) will automatically satisfy

9

DISTRIBUTION A: Distribution approved for public release.



July 2017 43

10 CHAPTER 2. BACKGROUND AND MOTIVATING RESULTS

the correct boundary conditions of the problem at hand. In discrete terms, if we arrange finite-
dimensional data collected from a simulation or experiment into a matrix Y #, with each column
representing a snapshot of data at a given time, then the POD modes are the columns of U
in the singular value decomposition Y # = UΣV ∗. Here the ith entry of the diagonal matrix
Σ corresponds to the energy contained in the ith POD mode. In this discrete formulation, for
simplicity we are omitting any rescaling of the data that should be performed so that the modes
are orthonormal with respect to the usual inner product. That is, if ui and uj are columns of U ,
then we really should have

∫

Ω
u∗
j (x

′)ui(x
′)dx′ ≈

n∑
k=1

u∗
j (xk)ui(xk)dxk = δij ,

rather than u∗
jui = δij . The original data Y # can then be represented in terms of POD coefficients

by Ỹ # = U∗Y #. If we wish to reduce the dimension of this data, we may do so in an optimal way
(with respect to energy content) by simply truncating the columns of U beyond a certain point,
which corresponds to removing POD modes that are of sufficiently low energy. Doing this gives a
reduced order approximation of the data Ỹ #

r = U∗
rY

#, where Ur contains the first r columns of
U . Note that there are alternative truncation techniques that may be more effective than energy
maximization for certain applications, for example balanced POD [112] gives a reduced order linear
state space model that is optimal with respect to a given set of sensors and actuators.

2.1.2 Galerkin projection

The idea behind GP is to approximate the governing PDEs that describe a given system with a
low-dimensional set of ODEs. This is accomplished by projecting the equations onto spatial POD
modes identified using the methods described in Sect. 5.2.1. We begin with the incompressible
Navier–Stokes equations:

∂u

∂t
= −(u · ∇)u− ν∆u−∇P

∇ · u = 0.
(2.1.2)

If we take the (spatial) inner product of Eq. (5.2.2) with a given mode uj , we obtain
〈
∂u

∂t
,uj

〉
= −〈(u · ∇)u,uj〉 − ν 〈∆u,uj〉 − 〈∇P,uj〉 . (2.1.3)

Substituting in the finite-dimensional approximation of Eq. (5.2.1), we obtain

ȧ = La+Q(a,a) + f , (2.1.4)

were L is a linear operation (i.e., a matrix), Q is a bilinear operator (which can be represented as
a 3-tensor), and f is a vector, each defined based on the identified spatial POD modes by

Lij = −ν 〈∆uj ,ui〉 , Qijk = −〈(uj · ∇)uk,ui〉 , f = −〈∇p,ui〉 . (2.1.5)

This gives a means of approximating the Navier-Stokes equations by a set of nonlinear ODEs. As
mentioned in Sect. 6.1, there are many modifications that have been proposed for this general
procedure, most typically to account for the energy transfer to unmodeled modes (i.e., the energy
cascade to finer spatial scales). For cases where spatial symmetries exist (e.g., in the streamwise
and azimuthal directions for circular pipe flow), one can show that the POD modes must become
Fourier modes, which can simplify their computation. It is also possible to “factor out” such
symmetries by using an optimally chosen moving frame of reference [114, 117].
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2.1.3 Dynamic mode decomposition

DMD has undergone a number of formulations, interpretations and modifications since its inception.
Common to all methods is the requisite collection and arrangement of data, summarized now.
Suppose we collect snapshots of data yi, which we assemble as columns in the data matrix Z.
For fluids systems yi will typically be a velocity field snapshot, but more generally it is a vector
of observations of an evolving dynamical system at a given time. From Z, we select all pairs of
columns that are sampled at a time difference ∆t apart, and place them into the matrices Y and
Y # (where the data in a given column of Y # was collected ∆t after the equivalent column of Y ).
Note that if Z consists of a sequential time-series of data, then Y and Y # are simply Z with
the last and first columns excluded, respectively. Let Y and Y # each be n by m matrices, so we
have m pairs of snapshots, each of size n. By not explicitly requiring a single time-series of data,
we allow for larger or irregular time gaps between snapshot pairs, the concatenation of data from
multiple time-series, and for the removal of any corrupted or spurious data. Recently, Tu et al.
[149] proposed an interpretation of DMD modes and eigenvalues as the eigendecomposition of the
matrix

A = Y #Y +, (2.1.6)

where Y + denotes the Moore-Penrose pseudoinverse of a matrix Y . While this is a succinct
interpretation, and one which will be useful in the ensuing analysis, it is typically not an efficient
(or even feasible) means of performing DMD (as discussed in [149]). This is especially true when
n � m, which is often the case in high-dimensional fluids systems. Instead, since Y and Y # have
rank at most min(m,n), it is typically more efficient to first project the data onto a subspace that
is (at most) of this dimension. One way to do this is by projecting the original snapshots onto the
POD modes of the data, which is implicitly done in all DMD algorithms. Note that the POD modes
of Y are the columns of U in the singular value decomposition Y = UΣV ∗ (though typically POD
is performed after first subtracting the temporal mean of the data, which is not done here). We
present here a typical algorithm to compute DMD, that is most similar to that proposed in [149]
as exact DMD.

Algorithm 1 (DMD).

1. Take the reduced singular value decomposition (SVD) of Y , letting Y = UΣV ∗.

2. (Optional) Truncate the SVD by only considering the first r columns of U and V , and the
first r rows and columns of Σ (with the singular values ordered by size), to obtain Ur, Σr,
and Vr

3. Let Ã := U∗
rY

#VrΣ
−1
r

4. Find the eigenvalues µi and eigenvectors wi of Ã, with Ãwi = µiwi,

5. Every nonzero µi is a DMD eigenvector, with a corresponding DMD mode given by ϕi :=
µ−1
i Y #VrΣ

−1
r wi.

This method is similar to the original formulation in [126], but for the fact that in step 5
the DMD modes are no longer restricted to lie within the column space of Y . We also explicitly
provide the optional step of truncating the SVD of Y , which might be done if the system is known
to exhibit low dimensional dynamics, or in an attempt to eliminate POD modes that contain
only noise. We note that this is not the only means to reduce the dimension of the identified
system dynamics, nor is it necessarily optimal. Indeed, [164] develops a method that optimizes the
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projection basis in parallel while performing a DMD-like eigendecomposition. [71] takes a different
approach, seeking a small number of nonzero modes from the full eigendecomposition that best
approximate the system dynamics. An empirical comparison between these various dimensionality-
reduction techniques will be given in Sect 6.3.3. Note that the continuous eigenvalues λci of the
system are related to the discrete time eigenvalues identified via DMD via λci = log(µi)/∆t. The
growth rate γi and frequency ωi associated with DMD mode ϕi are then given by λci = γi + iωi.

The matrix Ã is related to A in Eq. (6.2.1) by Ã = U∗
rAUr. While A can be viewed as an

approximating linear propagation matrix in Rn (i.e., the space of original data vectors), Ã is the
equivalent propagation matrix in the space of POD coefficients, which we will sometimes refer to
as POD space. Another interpretation of Ã is that it is the spatial correlation matrix between the
POD modes Ur, and the same POD modes shifted by the assumed dynamics A [126]. If we let
x̃k = U∗

r xk be the representation of a given snapshot x in the POD basis and let Ỹ = U∗
rY and

Ỹ # = U∗
rY

#, then it is easy to verify that the equivalent of Eq. (6.2.1) in POD space is

Ã = Ỹ #Ỹ +. (2.1.7)

Eq. (6.2.2) will be useful for the subsequent analysis performed in this paper.

2.1.4 Eigensystem realization algorithm

The eigensystem realization algorithm (ERA) is a method that extracts a linear state space model
from impulse response data. As mentioned in section 1.2, it was first conceived for analyzing the
structural dynamics of spacecraft in Juang and Pappa [72], but also shares close similarities with
a number of previously proposed techniques [e.g., 65, 82]. More details about a range of similar
methods and their potential applications can be found in [151, 152, 109].

The output of ERA is a discrete-time linear state-space system, taking the form.

xk+1 = Adxk +Bduk

yk = Cdxk +Dduk,
(2.1.8)

The ERA algorithm proceeds as follows:

1. Collect output data from an impulse response of the form {y0,yP,y2P, . . . ,ymP} and {y1,yP+1,y2P+1, . . . ,ymP+1}.

2. Assemble the block Hankel matrices

H =




y0 yP y2P · · · ymc

yP y2P y3P · · · y(mc+1)
...

...
...

. . .
...

ymoP y(mo+1)P y(mo+2)P · · · y(mo+mc)P


 ,

H# =




y1 yP+1 y2P+1 · · · ymcP+1

yP+1 y2P+1 y3P+1 · · · y(mc+1)P+1
...

...
...

. . .
...

ymoP+1 y(mo+1)P+1 y(mo+2)P+1 · · · y(mo+mc)P+1


 ,

where mc and mo are chosen such that mc +mo ≤ m.

3. Compute the (reduced) SVD H = UΣV T .
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4. Truncate the SVD by only considering the first r columns of U and V , and the first r rows
and columns of Σ (with the singular values ordered by size), to obtain Ur, Σr, and Vr, where
r is the desired model order.

5. The matrices of the reduced-order model of a system with p inputs and q outputs are given
by

Ar = Σ−1/2
r UT

r HVrΣ
1/2
r ,

Br = the first p columns of Σ1/2
r V T

r ,

Cr = the first q rows of UrΣ
1/2
r ,

Dr = y0.

(2.1.9)

Note that when p = 1, the data pairs in step 1 can just be taken from an impulse response sequence
with its last and first entries removed. This more general formulation allows for the skipping of
data when assembling H, which can reduce computational costs, while still allowing data to be
used across a large total time window.

In general, input-output data might not be available in the form of an impulse response, in
which case other more general subspace methods may be used (e.g., Verhaegen and Dewilde [151]).
Another approach is to use a technique such as observer/Kalman filter identification [74] to com-
pute an impulse response from input-output data with random inputs, before applying ERA. We
note that there are close similarities between DMD and ERA. Indeed, the two algorithms become
equivalent when m0 = 1, in the sense that the A matrices from either method are only different by
a similarity transform [149].

2.2 Motivating results

Here, we present some preliminary results that will serve as motivation for the research in the
following chapters. The main idea will be to use ERA to identify models for a pitching airfoil
system, and use these models to design feedback controllers that allow for the lift to be controlled.
The core methodology behind these results is given in Brunton et al. [23]. For brevity, we defer a
detailed discussion of the experimental and numerical methods to Chapters 3 and 4 respectively.

We consider an airfoil undergoing simple pitching motion about the quarter chord, with the
system input being the kinematics of the airfoil (captured by the angular acceleration, α̈) and the
output the lift coefficent, CL = FL

0.5ρAU2
∞
. Models (in the form of low order state-space realizations

of the system) are identified by applying the eigensystem realization algorithm to discrete-time
impulse response data. This occurs after first extracting the components of the lift that are directly
proportional to the angle of attack and its derivatives (α, α̇, and α̈), described in further detail in
[? ]. For direct numerical simulations, such impulse response data is directly simulated, while in
experiments it is acquired by applying the observer/Kalman filter identification algorithm (OKID)
to the input/output data from pseudo-random, frequency rich maneuvers. Feedback controllers are
designed using H∞ loopshaping, with a desired loopshape given by

Gd =
180a2(s+ 1.5a)

s2(s+ 30a)
, (2.2.1)

where the parameter a determines the bandwidth of the controller. This procedure can be applied
using both theoretical models (such as the Theodorsen model) and the previously discussed reduced
order models, identified in both direct numerical simulations (DNS) and wind tunnel experiments.
Simulations are performed on a two-dimensional flat plate airfoil at a Reynolds Number of 100,
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Figure 2.1: (left) Step responses of various magnitude for the closed-loop system in DNS, and (right)
Normalized step responses. Linear behavior in the output (lift coefficient) is observed, despite large
nonlinearities present in the system, which is evident from the variation in the angle of attack plots.

using an immersed boundary projection method ([139, 34]). Experiments were conducted using a
NACA0006 airfoil of chord length 0.245m with a free stream velocity of 3 m/s, giving a Reynolds
number of approximately 50,000. Gusting conditions are generated in the wind tunnel by using a
series of shutters downstream of the test section. In spite of the differences in parameters and condi-
tions between the DNS and experimental work, we demonstrate that the same control methodology
can be successfully applied in both cases.

Feedback control is implemented for tracking reference lifts of a range of magnitudes, both
with and without the presence of gusting disturbances. To begin with, we consider tracking step
changes in reference lift in DNS. Figure 2.1 shows accurate tracking of the desired lift over a range
of magnitudes, even significantly beyond the maximum value that can be held in steady conditions
(CL = 0.97). This highlights one of the major benefits of using feedback control: even though the
system is clearly non-linear, we are able to make the output (which is often what we care most
about) behave linearly. Here the nonlinear effects are compensated for by the controller modifying
the input to the system. Figure 2.2 shows lift tracking step responses for experimental conditions.
The presence of noise and time lags in the system degrades the performance. Nonlinear effects
further limit the performance for high amplitude steps.

Figure 2.3 shows experimental data, where feedback control is used to track a constant, high
magnitude lift in the presence of 10% periodic fluctuations in the freestream velocity. Despite
not receiving any direct information about the disturbance, the controller is able to correct for
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Figure 2.2: Step responses of various magnitude for the closed-loop system in wind tunnel experi-
ments. The controller performance degrades for high-amplitude steps
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Figure 2.3: Tracking a lift coefficient of 0.8 in wind tunnel experiments in the presence of periodic
gusts.

the changes in lift coefficient that are caused by the fluctuating free stream velocity, in order to
maintain a nearly constant lift. The performance closely agrees with predictions that can be made
using identified models for the gust disturbance.

Having validating that feedback control can be successfully implemented on simple step maneu-
vers, we proceed to investigate more complex desired lift profiles. Figure ?? shows the performance
of the DNS system in tracking a sinusoidally varying reference lift. Interestingly, we note that the
addition of a periodic component to the reference lift at certain frequencies allows for successful
tracking of a higher average lift. In particular,

While these results show one use for reduced order models, they also suggest a few limitations
of such an approach. Firstly, accurate lift tracking was only possible when an accurate, real-time
lift measurement was available. This is primarily due to the fact that the system is nonlinear .
This motivates the development of nonlinear modeling procedures considered in Chapters 3 and 5.
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Figure 2.4: Controller performance in tracking sinusoidally varying reference lift coefficient.

Figure 2.4 exposes some interesting flow physics for this particularly pitching airfoil system,
where higher average lift coefficients are found when pitching at a preferred frequency. This phe-
nomena is explored systematically in Chapter 4.

We also observe a degradation of performance when using experimental, rather than numerical
data. Aside from issues with implementing feedback control in experimental systems that contain
time lags between command and actuation, one cause of this degradation is the presence of noise
in the data. This is particularly important when it is data that is being used to identify models.
We study the presence of noise in the dynamic mode decomposition in Chapter 6, and propose
modified algorithms that can give improved performance with noisy data.

DISTRIBUTION A: Distribution approved for public release.

Chapter 3

A data-driven modeling framework
for predicting forces and pressures on
a rapidly pitching airfoil

This work formulates a switched linear modeling procedure to understand and predict the unsteady
aerodynamic forces arising from rapid pitching motion of a NACA 0012 airfoil at a Reynolds number
of 50,000. The system identification procedure applies a generalized dynamic mode decomposition
algorithm to time-resolved wind tunnel measurements of the lift and drag forces, as well as the
pressure at six locations on the suction surface of the airfoil. Linear state space models are identified
for 5-degree pitch-up and pitch-down maneuvers within an overall angle of attack range of 0◦–20◦.
The identified models accurately capture the effects of flow separation and leading-edge vortex
formation and convection. It is shown that switching between different linear models can give
accurate prediction of the nonlinear behavior that is present in high-amplitude maneuvers. The
models are accurate for a wide range of motions, including pitch-and-hold, sinusoidal, and pseudo-
random pitching maneuvers. Providing the models access to a subset of the measured data channels
can allow for improved estimates of the remaining states via the use of a Kalman filter, which could
be of use for aerodynamic control applications.

3.1 Introduction

The flight of small, highly maneuverable aircraft, whether biological or manmade, is greatly im-
pacted by unsteady aerodynamic effects, which can be either beneficial or detrimental to flight.
Accurate understanding of such effects can allow for the design of aircraft that are more efficient,
responsive, and robust.

The need to account for unsteady effects has been recognized since soon after the breakthrough of
powered manmade flight, in the classical works of Wagner [155], Theodorsen [142], and Garrick [50].
Indeed, many failed attempts at flight can probably be attributed to a severe lack of understanding
of how to utilize such effects. These classical models give significant insight into the fundamental
flow physics associated with unsteady flight, such as relative contributions to lift of the added
mass, quasi-steady bound circulation, and wake vortices. While such models can be quantitatively
accurate for cases of attached flow where viscous effects are negligible, they quickly lose validity
when dealing with separated flows, which are often encountered in the extreme motions that are
possible for birds, insects, and micro and unmanned aerial vehicles (MAV and UAV). It is precisely
in these extreme cases that accurate predictive models are essential to prevent catastrophic failure

17
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and ensure ongoing successful flight. While more accurate predictions can be attained from high-
fidelity simulations, the computational cost typically prohibits the direct use of such simulations
for real–time prediction and control.

Biological examples such as insects [18, 120, 156] and birds [153] have seemingly evolved to take
advantage of the high transient lift force that can be generated due to the formation of a leading
edge vortex (LEV) during rapid pitch- up motion, for example. While these give motivating ex-
amples of the advantages of accurate understanding of unsteady aerodynamic effects, the preferred
wing kinematics arising from evolution is highly specific and coupled to the geometry and other
physiological features of the animal. Indeed, the characteristics of unsteady aerodynamic effects,
particularly for separated flows, seem to be quite sensitive to both the geometry[79] and Reynolds
number [166] of the airfoils. Studies into low Reynolds number flow over stationary [166, 4, 165]
and pitching [154, 1, 131, 30, 80] symmetric airfoils have revealed, for example, complex effects
associated with the stability and separation of the suction surface boundary layer, which are again
highly sensitive to Reynolds numbers. These observations motivate the development of general
modeling procedures that can be easily applied to a range of parameter cases. In addition, it is
desirable for such methods to be sufficiently general such that they can be applied to more realistic
aircraft configurations, rather than just airfoils. As an example, such data driven modeling was
considered for the case of accurate prediction and control of lift for a low Reynolds number pitching
airfoil [22, 23], using the eigensystem realization algorithm [72] (ERA) and observer/Kalman filter
identification [74] (OKID). There has also been a significant amount of work in terms of nonlinear
modeling, ranging from low order state- space models formulated from theoretical considerations
[54], to Volterra series models that have been used to model a range of unsteady aerodynamic and
aeroelastic phenomena[132, 85, 11].

More generally, rapid advances in both computational power and experimental equipment has
seen a large increase in the amount of data that can be generated by researchers in fluid mechanics.
This has lead to the increased popularity of techniques such as proper orthogonal decomposition
[66] and dynamic mode decomposition [126] (DMD), which can be useful to extract tractable models
and physical insight from large fluids datasets.

In the present work, we use a variant of DMD to identify linear state space models for a variety of
pitch-up and pitch-down maneuvers. DMD was first introduced to the fluids community as a means
to extract dynamic information from data [125], and has subsequently been successfully applied to
a range of numerical and experimental fluids datasets [126, 128, 127, 70]. Numerous theoretical
developments have highlighted DMD’s connections to both Fourier [27] and Koopman [119] spectral
analyses, and other system identification techniques such as ERA [149]. DMD’s formulation has also
been generalized to allow for the identification of systems with inputs [105], and it is this framework
that we make use of in this work. One advantage of the present modeling approach is that,
unlike those generated using ERA/OKID the model states can be directly related to measurements.
This can allow easy switching between neighboring linear models, which subsequently permits the
formation of a switched linear model that is capable of predicting nonlinear behavior. Our algorithm
is described in section 3.2, which is followed by a description of the experimental setup in section
3.3. Section 5.4 demonstrates that the obtained models are accurate for a range of high-amplitude
pitching maneuvers. Section 5.5 contains a more general discussion of the results and subsequent
conclusions of this study.
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3.2 System identification method

We use a variant of dynamic-mode decomposition to identify models describing the pitching airfoil,
which is briefly described here. The goal will be to identify a family linear systems of the form

xi+1 = Akxi +Bkui. (3.2.1)

By identifying different Ak and Bk matrices for different angles of attack and directions of pitching,
we can assemble a family of linear models {Ak, Bk}Nk=1 that can subsequently be pieced together to
allow for accurate prediction of maneuvers spanning a wider range of angles of attack than any single
linear model would be capable of. We now describe in general terms the identification procedure
for a linear model {A,B}. Further details concerning the specific data chosen to constitute the
state x will be given in Section 3.4.1.

Suppose we collect a time-series of measurements xi, which we assemble as columns into a
matrix X. From X, we select all pairs of data that are separated by some nominal time ∆t,
which we assemble into matrices X1 and X2. If X consists of uniformly sampled data, then
X1 and X2 are X with the last and first columns removed, respectively. Standard DMD can
be characterized as finding the eigendecomposition of a matrix A satisfying (or approximately
satisfying) X2 = AX1[149]. Depending on the size of X1 and X2, A is either the (Frobenius)
minimum-norm solution (if the data matrices have more rows than columns), or the least-squares
solution (otherwise). The usefulness and validity of this approach relies assumption that the system
is autonomous, and not greatly affected by external inputs. If we have known inputs ui assembled
into a matrix U , then it is possible to modify DMD[105] to instead seek the matrices A and B
satisfying

X2 =
[
A B

] [
X1 U

]
. (3.2.2)

Provided that the size of the state m is not excessive, we may compute the augmented system
matrices [A B] through [

A B
]
= X2

[
X1 U

]+
, (3.2.3)

where + denotes the Moore-Penrose pseudoinverse. Since fluids systems are, in general, nonlinear,
the ability of the identified linear system in accurately modeling all data may be limited. However,
an intelligent selection of state variables x can go a considerable way towards factoring out much
of the nonlinearity in the system. To begin with, rather than directly using force and pressure
measurements, we can instead consider deviations from the equilibrium (or mean) values at a given
angle of attack. This allows for the resulting linear model to be accurate despite nonlinear static
behavior.

3.3 Experimental method

Experiments were conducted at the Andrew Fejer wind tunnel at the Illinois Institute of Technology,
with a diagram of the airfoil mounting shown in figure 3.1. A NACA 0012 airfoil of chord length
c = 0.245m was used in a test section of length 3m and cross-section 0.6m by 0.6m. The airfoil
spanned the width of the test-section, thus minimizing three-dimensional effects. The airfoil was
mounted upon a six-axis ATI nano17 force transducer, which allowed for the measurement of time-
resolved forces and moments. This, in turn, was mounted upon two pushrods actuated by Copley
servo tubes, allowing for pitching motion to be commanded. For the results presented here, only the
rear pushrod was actuated, which resulted in pitching about an axis 0.11c from the leading edge.
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Figure 3.1: Schematic of the experimental setup.

Six pressure taps were installed along the chord of the airfoil at one spanwise location, located at
distances of 0.050c, 0.217c, 0.385c, 0.552c, 0.720c, and 0.887c aft of the leading edge. The freestream
velocity was measured using a pitot tube and remained constant at a nominal value of 3m/s, giving
a Reynolds number cU

ν of approximately 50,000, and a convective time tc =
c
U = 0.0817s. Note that

some blockage effects meant that the freestream velocity changed by a small amount as the angle
of attack changed (approximately 3% when pitching between 0◦ and 20◦). All forces and pressures
were nondimensionalized using the averaged velocity at the relevant phase of the maneuver. (Note
that this neglects unsteady effects associated with the changing velocity, but since the changes are
small, these effects should be negligible.)

Force and pressure data was acquired at a frequency of 1000Hz. For each maneuver, data was
phase-averaged over at least 50 cycles to reduce the effect of measurement noise. All maneuvers
were also performed with the wind tunnel off before and after data was collected with the tunnel
switched on. These results were also phase-averaged, and subtracted from the tunnel-on data.
This eliminates (for the force readings) the effects of the mass of the wing, the added-mass terms
associated with accelerating the surrounding air, and also any other effects on the measurement
equipment resulting directly from the maneuver performed. By eliminating added-mass terms, we
isolate the circulatory fluids forces arising from a given pitching maneuver.

3.4 Results

Here results are presented for the identification (Section 3.4.1) and performance of the suite of
identified models. To test the performance of the family of models that have been identified,
we analyze their ability to predict a range of other maneuvers. These range from compositions
of similar individual maneuvers (Section 3.4.2), to sinusoidal (Section 3.4.3) and pseudo-random
(Section 3.4.4) pitching maneuvers. The latter two of classes of maneuver bear little similarity to
the maneuvers used for identification. In this sense, we will be able to show the generality of these
models, which highlights that the identified models represent more than simply fits to the data,
and have predictive capabilities.

3.4.1 System identification results

Models were identified separately from pitch-up and pitch-down maneuvers between 0◦–5◦, 5◦–10◦,
10◦–15◦, and 15◦–20◦, with model states obtained from the 6 pressure readings and the lift and
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drag measurements. The prescribed maneuvers take the canonical form[47]

α(t) =
MG

max(G)
, G = log

[
cosh(a(t− t1)) cosh(at2)

cosh(a(t− t2)) cosh(at1)

]
. (3.4.1)

Nondimensionalizing time by U
c , we take t2 − t1 = 2, and a = 10U

c = 122.4 (and M = 5◦). With
these parameter values, a becomes the main governing parameter that determines the rate of the
step.

The duration of the pitch was approximately 4 convective times (4 c
U ). Static data at the corre-

sponding angles of attack was first subtracted from all measurements, and all data was nondimen-
sionalized (forces by 1

2ρcU
2 and pressures by 1

2ρU
2). To identify models, the DMD-type algorithm

described above was used, which allows for data with inputs (which in this case was taken to be
measurements of either α and α̇, or just α̇). Using this method, we arrive at models of the form

xi+1 = Axi +Bui,

as described in Section 3.2. Here we let x = [Ĉp1 Ĉp2 . . . Cp6 Ĉl Ĉd]
T , and u = [α α̇]T . Note that

while we treat α as an input for convenience, the fact that it is entirely dependent on α̇ means
that we could also treat it as an additional system state. Here ·̂ represents the deviation from an
equilibrium condition, Ĉi = Ci − Ce

i (α), where Ce
i (α) is the equilibrium value at a given angle of

attack. We first attain this equilibrium data for angles of attack in the range α ∈ [0◦, 22◦], which
is shown in Figure 3.2. To motivate the development of unsteady models, we also show how data
acquired for a pitching airfoil deviates from these equilibrium values. Considering just the static
data, we observe that the lift coefficient increases close to linearly (with a slope of approximately
1.7π) between 0◦ and 8◦, before the lift curve reaches its peak and then plateaus between 10◦ and
15◦, before again increasing beyond 15◦. The lift plateau corresponds to the airfoil stalling, with the
flow over the suction surface becoming separated. Further evidence for this comes from examining
both the drag curve, which sees a large increase in drag beyond α = 8◦, and in the first two pressure
coefficients, which give a sharp drop in pressure beyond this angle. Prior to full separation, there
is evidence for partial separation towards the rear of the airfoil. Pressure sensors 3–6 all measure
a drop in pressure at a critical angle between 2◦ and 6◦, which appears to signify the separation
point moving upstream of the given sensor.

Returning now to the system identification procedure, Figures 3.3 and 3.4 show the performance
of each model in predicting the pressure and force coefficients for the maneuver upon which they
were identified. For reference, the static pressure and force coefficients at the instantaneous angle
of attack are also shown in Figures 3.3 and 3.4. Rather than subtracting the full static curves
before system identification, we found improved results by assuming linear variation in the static
values throughout the maneuver. This avoids issues with separation-related “jumps” occurring at
different angles of attack in for the static and moving airfoil, which makes the static-subtracted
data less smooth.

We can identify two dominant features of the pitch-up and pitch-down behavior. A temporary
rise in Cl, Cd and −Cp is observed which is consistent with the formation and convection of a
leading-edge vortex (see e.g. all measurements for pitching between 15◦ and 20◦), and a time-lag
in reaching the steady state value, most likely due to the boundary layer requiring time to reach
its new equilibrium configuration (see e.g. Cp6 when pitching between 0◦ and 5◦).

We finally note that we obtain quite different models for pitch-up and pitch-down maneuvers.
To show this explicitly, Figure 3.5 shows the inaccuracy of the prediction of a 5–10◦ pitch-up
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Figure 3.2: Force and pressure coefficient data for a static airfoil at angles of attack between 0◦ and
22◦, as well as for an airfoil sinusoidally pitching between 5◦ and 15◦ at a rate k = πfc

U = 0.051.

DISTRIBUTION A: Distribution approved for public release.

3.4. RESULTS 23

Pitching from 0◦ to 5◦ Pitching from 5◦ to 10◦

0 10 20
0

1

2

−
C

P
1

0 10 20
0

0.5

1

−
C

P
2

0 10 20
0

0.5

1

−
C

P
3

0 10 20
0

0.5

1

−
C

P
4

0 10 20
0

0.5

1

−
C

P
5

0 10 20
−0.5

0

0.5

−
C

P
6

0 10 20
0

0.5

1

C
l

Convective Time, tU/c
0 10 20

0

0.05

0.1

C
d

Convective Time, tU/c

 

 

Static

Data

Model

0 5 10 15 20
1

2

3

−
C

P
1

0 5 10 15 20
0

2

4

−
C

P
2

0 5 10 15 20
0.5

1

1.5

−
C

P
3

0 5 10 15 20
0

1

2

−
C

P
4

0 5 10 15 20
0

0.5

1

−
C

P
5

0 5 10 15 20
0

0.5

1

−
C

P
6

0 5 10 15 20
0.5

1

1.5

C
l

Convective Time, tU/c
0 5 10 15 20

0

0.1

0.2

C
d

Convective Time, tU/c

 

 

Static

Data

Model

Pitching from 10◦ to 15◦ Pitching from 15◦ to 20◦

0 5 10 15 20
0

1

2

−
C

P
1

0 5 10 15 20
0

1

2

−
C

P
2

0 5 10 15 20
1

1.5

2

−
C

P
3

0 5 10 15 20
0

1

2

−
C

P
4

0 5 10 15 20
0.5

1

1.5

−
C

P
5

0 5 10 15 20
0.5

1

1.5

−
C

P
6

0 5 10 15 20
0.5

1

1.5

C
l

Convective Time, tU/c
0 5 10 15 20

0

0.2

0.4

C
d

Convective Time, tU/c

 

 

Static

Data

Model

0 5 10 15 20
0.5

1

1.5

−
C

P
1

0 5 10 15 20
0.5

1

1.5

−
C

P
2

0 5 10 15 20
1

1.5

−
C

P
3

0 5 10 15 20
1

1.5

−
C

P
4

0 5 10 15 20
0.5

1

1.5

−
C

P
5

0 5 10 15 20
0.5

1

1.5

−
C

P
6

0 5 10 15 20
0.5

1

1.5

C
l

Convective Time, tU/c
0 5 10 15 20

0.35

0.4

0.45

C
d

Convective Time, tU/c

 

 

Static

Data

Model

Figure 3.3: Force and pressure data for 5◦ pitch-up maneuvers for starting angles of 0◦, 5◦, 10◦

and 15◦, which were used for system identification. In all cases, the identified models accurately
replicate the experimental data. Also shown is the static data at the relevant instantaneous angle
of attack.
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Figure 3.4: Force and pressure data for 5◦ pitch-down maneuvers for starting angles of 5◦, 10◦, 15◦

and 20◦, which were used for system identification. In all cases, the identified models accurately
replicate the experimental data. Also shown is the static data at the relevant instantaneous angle
of attack.
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Figure 3.5: Example of inaccurate prediction of a pitch-up model (5 − 10◦ model, red curves) on
pitch down maneuver (10− 5◦ maneuver, blue curves).

model for a 10–5◦ pitch-down maneuver, which arises primarily because the 5–10◦ pitch-up model
predicts the existence of a time-delay, which is not present in the 10–5◦ pitch-down data. This
has important implications for the use of pseudo-random system identification maneuvers, which
necessarily incorporate both pitching up and pitching down motion.

3.4.2 Multiple pitch-up and pitch-down maneuvers

We now consider a maneuver consisting of two pitch-ups followed by two pitch-downs, each in rapid
succession. We attempt to predict the maneuver by switching between the relevant models for each
pitch-up and pitch-down. For this maneuver, four different models are used. Given that the state
of each model consists of the same variables, this is simply a matter of switching the A and B
matrices used to propagate the system.

The results for this procedure in predicting Cl, Cd, as well as two of the pressure coefficients
are shown in Figure 3.6, where we have considered double pitch-up/down maneuvers between 10◦

and 20◦ with different pitching rates. We vary the a parameter from equation 3.4.1: to modify the
pitching rate (halving and doubling it from the value used in system identification). In all cases,
we switch between sub-models at t = 10, 20 and 30 convective times, using the final predicted state
from one sub-model as the initial condition for the next. To give some basis for comparison, we
show the performance of a single linear model (that identified from a 5–10◦ pitch-up) in predicting
this maneuver in Figure 3.7. We note that the only section of this maneuver that this model
accurately predicts is that which is most similar to its identification maneuver.

Figure 3.8 shows a quadruple pitch-up and -down maneuver, which switches between all models.
From all of these results, we find that switching between models generally works well, though
sometimes it can induce “jumps” immediately after switching, particularly when switching between
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Figure 3.6: Switched model performance in predicting pressure and force coefficients for double
pitch up/down maneuvers with different pitch-rates, between 10◦ and 20◦. Switching between
sub-models occurs at t = 10, 20 and 30 convective times, using the final predicted state from one
sub-model as the initial condition for the next. The middle plot uses the same pitch- rate as the
maneuvers used for system identification.
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Figure 3.7: Performance of a single (5–10◦ pitch-up) model in predicting pressure and force coeffi-
cients for double pitch up/down maneuver.
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Figure 3.8: Performance of switched model in predicting pressure and force coefficients for quadruple
pitch up/down maneuver. Switching between models occurs at multiples of 10 convective times
between t = 10 and t = 70, where the final predicted state from one sub-model as the initial
condition for the next.

the pitch-up and pitch-down models between 5◦ and 10◦. It is possible that these could be eliminated
or reduced by further refining the system identification and/ or switching procedure.

3.4.3 Sinusoidal pitching

Next, we consider high-amplitude sinusoidal pitching maneuvers, pitching between 0◦ and 20◦ at
rates f = 0.2 Hz and 0.4 Hz, giving a reduced frequencies k = πfc

U = 0.051 and 0.103. In Figure
3.9 we show the predicted pressures and forces when using a single model (arbitrarily taken to be
the pitch-up model from 5◦ to 10◦), a switched model, and a switched equipped with a Kalman
filter (that gives access to the 1st and 6th pressure measurements). Details concerning the design of
this Kalman filter are given in Appendix 1. We find that the switched model performs better than
any single linear model, and that improved accuracy in all measurements can be achieved when
using the Kalman filter. The latter observation demonstrates that, even if the models themselves
have some inaccuracies in predicting the outputs, access to measurements of a subset of these
outputs can improve the prediction of all outputs. This is relevant for the use of such models for
real-time control, where, for example, we may seek to attain a desired lift force using only pressure
measurements.

3.4.4 Pseudo-random pitching

We finally consider the case where the angle of attack varies in a pseudo-random manner. Figure
3.10 shows the performance of a switched model equipped with a Kalman filter in predicting the
pressures and forces for a pseudo-random pitching maneuver. Again, we observe close agreement
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Figure 3.9: Predicted and actual pressure and force coefficients for high-amplitude sinusoidal pitch-
ing at dimensionless frequencies k = πfc

U = 0.051 and 0.103. Predictions are made using a model
both with and without a Kalman filter. When a Kalman filter is used, the model is given access to
the 1st and 6th pressure measurements.

between the measured and predicted results. This close agreement highlights the full generality of
the switched model, as it is capable of accurately predicting the behavior of the airfoil forces and
pressures for arbitrary high-amplitude pitching motions.

.

3.5 Discussion and conclusions

The results presented in Section 5.4 demonstrate that the system identification technique described
in Section 3.2 can be of use for unsteady aerodynamic modeling applications. The fact that accurate
models were attained from very simple pitch-up and pitch-down maneuvers gives the procedure
an advantage over the OKID algorithm, which typically requires a concatenation of a variety of
motions to obtain accurate models[22]. The absence of internal states in the resulting models mean
that they are naturally suited for piecing together for the formation of a global switched model.
This process is difficult for ERA models, where the internal states are not directly associated with
physical measurements. Having measurements directly associated with model states means that the
dimension of the observables must be at least as large as the dimension of the underlying dynamics
(or their approximating model), though this restriction could be relaxed if we were to concatenate
the data with time-shifted measurements (as is done in ERA), or by using transformations of the
original data [160]. Conversely, the fact that the models are accurate suggests that 8th order linear
models are sufficient to capture the phenomena present in the maneuvers considered. Indeed, in
many cases it was found that it was possible to apply balanced truncation to reduce the dimension
of the identified models without significant degradation of predictive accuracy.

In general, linear modeling techniques are appealing due to the simplicity of their identification
and formulation, and the ease of use in simulation and controller design. Their accuracy in the
prediction of nonlinear dynamics, however, will typically be fundamentally limited to a region in
phase-space that is near to the identification maneuver. Scheduling between a family of linear
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Figure 3.10: Performance of the switched model, equipped with a Kalman filter and measurements
of the first and last pressure coefficient, in predicting pressure and force coefficients for high-
amplitude pseudo-random pitching maneuver.
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models can go some way to incorporating nonlinear effects into a global model, thus increasing
the region in phase-space where such models are accurate. This work demonstrated that, in the
α direction of phase-space, such an approach can work between 0◦ and 20◦, which includes the
regimes where the flow over the suction surface is completely attached, partially separated, and
fully separated. This range was the maximum available given physical limitations of the airfoil
mounting, but we imagine that separated flows at higher angles of attack should also be able to
be accurately modeled, given that they are phenomenologically similar (in terms of being fully
separated) to those near 20◦.

In terms of the applicability of the model for maneuvers with different pitch-rates (i.e. the
α̇ direction of phase space), we see in Figure 3.6 that the models remain accurate for a range of
values of pitch rates. Looking at Figure 3.9, however, we see that switching between models while
pitching at a relatively fast rate can lead to some degradation of model accuracy. This is a known
limitation of gain scheduling models in general[130].

The fact that the acquired data was phase-averaged over a number of cycles means that any
unsteady phenomena that are not phase-locked with the pitching motions will be averaged out of
the identified models. Particularly for separated boundary layers, such effects (which can occur
on a faster timescale to the pitching motions) can be significant, even if they are not directly
controllable by pitching motion. Further work could, for example, incorporate such dynamics into
state estimators, which could improve the real-time predictive power of such models.

The data that is obtained for the cases of a pitching and stationary airfoil is also of fundamen-
tal fluid mechanical interest, which will be further investigated by investigating the time-varying
velocity field using particle image velocimetry (PIV). Specifically, it would be interesting to explore
whether a small number of measurements could be used to accurately predict not only the pressures
and forces (as was done in the present work), but also the entire velocity field in the vicinity of the
airfoil.

Appendix 1: Kalman filter design

The linear models (taking the form given in equation 3.2.1) identified in this work give a prediction
of forces and pressures given knowledge of the airfoil pitching kinematics. In some situations,
it might be possible to supplement knowledge of these kinematics (i.e., the system inputs) with
some number of additional measurements. This section briefly describes the setup and design of
a Kalman filter[78], that is used to improve the estimate of the state of the system using such
additional measurements. Suppose we have a state space system of the form

xi+1 = Axi +Bui +Gwi

yi = Cxi +Dui +Hwi + vi,

which is a generalization of equation 3.2.1 to include the influence of plant disturbances w, as well
as an output equation that includes sensor noise v. For the purposes of this work, we will assume
that H = 0, D = 0, and C is a matrix that selects a subset of the states x as outputs. The
Kalman filter gives an estimate of the state x̂ from the system inputs u and (potentially noisy)
measurements y, whose dynamics are governed by the equation

x̂i+1 = Ax̂i +Bui +L(yi −Cx̂i −Dui).

Here the matrix L gives the optimal state estimate for given disturbance and noise covariance
matrices, Q = E(wwT ) and R = E(vvT ), respectively. Further details concerning Kalman filter
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design and the computation of L may be found in standard optimal control textbooks[136]. For
this work, we take Q and R to be appropriately sized diagonal matrices, and set all diagonal entries
to be equal aside from the entries of Q corresponding to the lift and drag states, which we decrease
by a factor of 10 to avoid excessive oscillations in the estimated force coefficients. We find that
Kalman filter performance is relatively insensitive to changes in these weights.
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Chapter 4

Lift enhancement of high angle of
attack airfoils using periodic pitching

In this work, we study a sinusoidally pitching, two-dimensional flat plate airfoil at a Reynolds
number of 100, across a range of pitching amplitudes, frequencies, mean angles of attack, and pitch
axis locations. We report on the lift, drag, and wake structures present in different regions of
parameter space. We examine the average and spectral properties of the forces on the airfoil, and
use dynamic mode decomposition to examine the structures and frequency content of the wake.
We give focus to a number of regions in parameter space where interesting behavior is observed. In
particular, we find that in the regime where the flow on the upper surface of the airfoil is separated,
but the steady wake is stable, pitching at a specific frequency excites a vortex shedding mode in
the wake, leading to substantial increase in the lift and drag forces. This phenomena is insensitive
to pitch-axis location and amplitude. At higher angles of attack where the wake for a steady airfoil
exhibits periodic vortex shedding, we find that, in addition to this mean lift maxima, the interaction
between the natural and forced modes gives rise to more complex behavior.

4.1 Introduction

The unsteady motion of airfoils at low Reynolds number and high angle of attack leads to a range of
phenomena that cannot adequately be explained by classical aerodynamic theories. It is precisely
these conditions that are encountered by small fliers, ranging from biological examples such as
birds[153], insects[18, 120, 156], and bats, or manmade UAVs and MAVs. The vortex dynamics
excited by airfoil motion, actuation, or indeed present in the natural flow at sufficiently high angles
of attack, can significantly affect aerodynamic performance[87]. This motivates work that seeks
to understand and control such phenomena, and indeed modeling the dynamics of pitching and
plunging airfoils has attracted significant recent attention[22, 23, 10, 57, 61, 39, 168].

This work will investigate the interaction between periodic vortex shedding that can occur for
bluff bodies (or airfoils at sufficiently large angle of attack), and imposed sinusoidal pitching motion.
In the case of plunging motion, it has been observed that lock on[121] can occur between plunging
frequency and natural vortex shedding[167, 31, 33], while similar phenomena have been found for
surging oscillations over a wide range of Reynolds number[29]. We will show that similar phenomena
are observed in the case of pitching motion. In experimental conditions, plunging oscillations may
also lead to a bifurcation of the wake direction[32].

It has been observed that optimal pitching trajectories maximize the circulation that is entrained
in leading edge vortices[90], linking the concepts explored here to the general notion of a formation

33
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Figure 4.1: Computational domain used for this study, with the size and location of the airfoil
shown. Dashed lines represent the borders of each nested grid.

number that can be used to explain characteristic sizes and frequencies associated with vortex
phenomena[51].

While this work will only consider two-dimensional airfoils, we note that three dimensional
phenomena can give rise to additional complexity. For example, aspect ratio effects being significant
on lift enhancement due to periodic forcing[140], and in the case of three dimensional airfoils that
are free to exhibit rolling motion, forced pitching can lead to self-excited roll oscillations[144].

There are strong parallels between studying the effect on lift and drag in the context of lifting
airfoils, and in the investigation of thrust-generating airfoils[42], where it is found that propulsive
efficiency is maximized when flapping produces a reverse von-Kàrmàn wake that excites the least
stable spatial mode of the mean wake flow[146, 145]. We describe the numerical method and scope
of the work in section 4.2, before presenting our results in section 5.4. We will focus on presenting
and analyzing results at parameters where the pitching motion triggers, strengthens, and interferes
with vortex shedding.

4.2 Numerical method and scope of investigation

We use an immersed boundary projection method[139, 34] to perform direct numerical simulations
of the incompressible Navier–Stokes equations. The domain consists of four nested grids about a
flat plate airfoil. A diagram of the computational domain is shown in Figure 5.1. Each of the
four grids contains 600 by 300 grid points, with a total computational domain extending 96 and
48 chord lengths in the streamwise and transverse directions, respectively. The Reynolds number
(based on chord length and freestream velocity) is fixed at 100 throughout. The relative compu-
tational cheapness of such two-dimensional, low Reynolds number configurations makes thorough
investigations of high-dimensional parameter spaces feasible. Resolution studies were performed to
ensure that the resolution and extent of the domain were sufficient. To give an example of this,
we show in Figure ?? results from applying Crank-Nicholson and third-order Runge-Kutta time
steppers were used to evolve the linear and nonlinear terms respectively, with step size ranging
between ∆t = 0.0005c/U and ∆t = 0.01c/U , with the smaller range of ∆t required to resolve
pitching motions with larger frequencies and/or amplitudes. In all cases, we run the simulations
for sufficiently long such that any limit cycle or long-time behavior is reached before the data that
is used for analysis is collected. We consider airfoil kinematics of the form

α(t) = αM + αA sin(2πf∗t), (4.2.1)

DISTRIBUTION A: Distribution approved for public release.

4.3. RESULTS 35

Time, tc/U

0 5 10 15 20

L
if
t 
C

o
e
ff
ic

ie
n
t

-0.5

0

0.5

1

1.5

2

2.5

Time, tc/U

0 5 10 15 20

D
ra

g
 C

o
e
ff
ic

ie
n
t

-0.5

0

0.5

1

1.5

2

2.5

Time, tc/U

18.5 19 19.5

L
if
t 
C

o
e
ff
ic

ie
n
t

0.8

0.9

1

1.1

1.2

1 Grid

2 Grids

3 Grids

4 Grids

 5 Grids

3 Larger Grids

Grid Number

1 2 3 4 5

A
v
e
ra

g
e
 L

if
t 
C

o
e
ff
ic

ie
n
t

0.8

0.9

1

1.1

1.2

Figure 4.2: Resolution study to determine appropriate size of computational domain

where f∗ = fc/U is a dimensionless frequency. We perform simulations with the mean angle of
attack varying in 5◦ increments between 15◦ and 45◦, with pitching amplitudes of 1◦, 2◦, 5◦ and
10◦. We consider frequencies in the range f∗ ∈ [0.01, 5], with approximately 20 frequencies used
for each αM and αA. For some cases, additional frequencies are added to improve local resolution
in parameter space. Performing these simulations with for pitching about the leading edge and
midchord, this results in a total of approximately 1120 individual simulations.

4.3 Results

4.3.1 Static data

To give a sense for the behavior of the stationary airfoil, we show a typical lift curve in Figure 4.3.
We observe the expected linear relationship between the angle of attack, α, and the lift coefficient,
CL for low angles of attack. Once the angle of attack becomes sufficiently large (α > 10◦), flow
separation on the upper surface of the airfoil leads to a shallow lift slope. At α ≈ 20◦, the flow
is separated and steady. Beyond a critical angle of attack αc ≈ 27◦, the steady solution becomes
unstable, and periodic vortex shedding is observed. This is an example of a supercritical Hopf
bifurcation that is seen in the wake of bluff bodies as the Reynolds number is increased[135]. Note
that in the case of an airfoil at an angle of attack, the projected area c sin(α) is the effective length
parameter for determining the location of the bifurcation. For α > αc, the system exhibits higher
lift (and drag) than would occur at the unstable equilibrium solution.

4.3.2 Force analysis

In this section, we study the lift and drag forces for pitching motion with various amplitudes,
frequencies, and mean angles of attack.
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Figure 4.3: Lift curve for stationary airfoil, showing regions where the equilibrium is stable (α <
27◦) and unstable (α > 27◦), above which periodic vortex shedding occurs.

Figure 4.4 shows the mean lift coefficient as a function of the dimensionless frequency, f∗, for
pitching with a range of amplitudes, αA, and mean angles of attack, αM . We observe a distinct
local peak in CL for all values of αM and αA, aside from pitching with low amplitudes (αA = 1◦ or
2◦) about αM = 15◦. The location of this lift peak moves slightly as αM varies, from approximately
f∗ = 0.3 at αM = 20◦, to f∗ = 0.23 at αM = 45◦. For αM ≥ 30◦, we observe a second peak emerging
at approximately twice the frequency of the dominant peak. This suggests that we excite dynamics
that give enhanced lift when pitching at both a fundamental frequency and its first harmonic. We
note also that the size of the lift increment seems to be largest for the intermediate base angles of
25◦ and 30◦.

Figure 4.5 shows the mean drag coefficient for the same range of parameters as Figure 4.4. We
find that there are increases in drag that show similar behavior to those for the lift. To compare the
changes in lift and drag more explicitly, we plot the ratio between mean lift and drag coefficients in
Figure 4.6. For larger pitching amplitudes, there is an increase in the lift-to-drag ratio at certain
frequencies. The frequency of the lift-to-drag peak shows similar behavior to the peaks in both lift
and drag (note that, unlike the lift and drag forces, lift over drag decreases with increasing αM ).
This finding is potentially important for the effectiveness of such motions in flight.

Turning our attention back to the lift coefficient, we plot in Figure 4.7 the increase in lift
coefficient from the fixed-wing value at αM , normalized by the amplitude of pitching. For angles of
attack below the critical angle (αc) at which vortex shedding occurs, the lift increment is slightly
larger for larger αA, even after normalizing, despite the fact that the mean lift is lower than the
fixed-wing value across other frequencies. This could be due to the fact that, for larger αA, the
maximum angle of attack attained in a pitching cycle is closer to or exceeds αc, and thus better
able to excite vortex shedding. Conversely, for αM ≥ 25◦, the normalized lift increment is slightly
larger for smaller pitching amplitudes, though in some cases this is in line with the larger average
lift increments present for lower pitching amplitudes across all frequencies.

To analyze the effect of pitch axis location, we show in Figure 4.8 the normalized lift increment
(i.e., the same quantity plotted in Figure 4.7) for pitching about the leading edge, rather than the
midchord. We find very similar results to pitching about the midchord, with maximum increased
lift at dimensionless frequencies between 0.25 and 0.3. The lift increment is larger for pitching
about the leading edge, which could be due to the increased range of motion of the trailing edge
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Figure 4.4: Mean lift coefficient for a range of pitching amplitudes αA, frequencies, f
∗, and mean

angles of attack, αM . Pitching is about the midchord.

for the same angular pitch amplitude. Note also that leading edge pitching will result in larger
added mass forces, which for nonzero αM will increase lift and decrease drag, particularly for high
pitching frequencies. The remainder of this section will consider pitching about the midchord. The
effect of pitch axis location will be investigated more thoroughly in the next section.

Figure 4.9 indicates how the mean lift compares to the maximum and minimum lift for αA = 5◦.
Note that in some of the cases the lift is not periodic with the period of forcing, so these maximum
and minimum values are the global extrema over many cycles. We observe (particularly clearly
for lower mean angles of attack) that as the frequency increases from low values, the amplitude of
the lift response increases, while the mean remains approximately constant. Above f∗ ≈ 0.2, the
amplitude of the variation in lift decreases, but with the lift minimum rising more abruptly than
the lift maximum falls. This asymmetry produces the higher average lift that is observed in the
range 0.1 < f∗ < 0.5. For higher frequencies, larger added mass forces mean that the amplitude of
the lift oscillations continue to increase, though the mean lift stays approximately constant.

To analyze the time-varying behavior in more detail, we take the discrete Fourier transform of
the lift coefficient signal in time for each trial. The results for this are shown in Figure 4.10, for
pitching amplitude αA = 1◦. For αM ≤ 25, we observe one dominant frequency peak, corresponding
to the pitching frequency f∗. Even though the undisturbed wake is stable at α = 25◦, we still
observe some frequency content near the almost-unstable vortex shedding mode across all pitching
frequencies. For larger angles of attack, there is a second major peak in the spectra, corresponding
to the vortex shedding frequency at the given αM . In the region where these two frequencies
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Figure 4.5: Mean drag coefficient for a range of pitching amplitudes αA, frequencies, f
∗, and mean

angles of attack, αM . Pitching is about the midchord.

are similar, there appear to be complex interactions between the dynamics associated with each
frequency. As αM grows larger, a distinct peak emerges at the first harmonic of the fundamental
vortex shedding frequency, further complicating the frequency response of the system, which can
now include, at very least, sums and differences of multiples of these frequencies.

4.3.3 Wake analysis with dynamic mode decomposition

Here we analyze the flow field in the wake of the body, in an attempt to study the underlying
physics behind the phenomena observed in section 4.3.2. We will make use of the dynamic mode
decomposition (DMD)[125, 126] which is a technique that can extract dynamical content from data,
in the form of spatial modes and their associated growth/decay rates and frequencies of oscillation.
We refer the reader to recent references for details of the DMD algorithm[126, 119, 149, 160] and
its variants[27, 164, 71, 62, 63, 40].

We begin by considering a base angle αM = 20◦, which is prior to the Hopf bifurcation at
which unforced vortex shedding occurs, and thus has a stable equilibrium wake. Figure 4.11 shows
vorticity field snapshots for a variety of forcing frequencies with amplitude αA = 1◦. We observe
that at around f∗ ≈ 0.3, the vorticity field is qualitatively different, with periodic vortex shedding
being excited by the pitching motion. This immediately suggests that the increased lift observed
at these pitching frequencies arises due to enhanced vortex formation. We note that the vorticity
fields for pitching about the leading edge (left) and midchord (right) show similar results, with
leading-edge pitching generally leading to stronger, more distinct vortices forming closer to the
airfoil.
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Figure 4.6: Mean of lift-to-drag ratio for a range of pitching amplitudes αA, frequencies, f
∗, and

mean angles of attack, αM . Pitching is about the midchord.

The vorticity fields shown in Figure 4.12 have the same parameters as those for Figure 4.11,
but with a larger pitching amplitude of αA = 5◦. We again see the same phenomena where the
forcing excites vortex shedding, but here distinct vortices form and persist downstream over a wider
range of frequencies. This is consistent with the results from section 4.3.2, where for the αM = 20◦

case in Figures4.4 we observe an enhanced lift over a wider range of frequencies for higher forcing
amplitudes.

To investigate further the dynamics of the wakes, we perform DMD on the vorticity field. We
use 191 snapshots for each case, with a time gap between snapshots of ∆t = 0.1c/U . We take data
from a region downstream of the body as our domain for DMD, to avoid complications associated
with having the moving body in the domain. For clarity of results, we truncate the rank of our
data to 20 proper orthogonal decomposition (POD)[66] modes. This is found to capture at least
99% of the energy of the flow.

While it is most often applied to data from systems without external forcing, DMD can be
used to examine forced systems[147, 105, 92], though one must take care in the interpretation of its
outputs. In this context, we show that it can be an effective tool to determine both the frequency
content of the wake, and also if the wake “locks on” to a vortex shedding mode. As an aside, we
note that more rigorous connections between DMD and Fourier analysis can be made[27].

Figure 4.13 shows the DMD eigenvalues, as well as the four largest amplitude modes, for a variety
of forcing frequencies, for pitching about the leading edge (left) midchord (right) with amplitude
αA = 1◦. In this section, we restrict our attention to frequencies near the vortex shedding frequency
and frequency of maximum lift. Results at lower and higher frequencies are similar to the minimum
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Figure 4.7: Mean lift coefficient increment over the fixed airfoil value, normalized by the amplitude
of pitching αA, across a range of pitching amplitudes αA, frequencies, f

∗, and mean angles of attack,
αM .. Pitching is about the midchord.
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Figure 4.8: Mean lift coefficient increment over the fixed airfoil value, normalized by the amplitude
of pitching αA, across a range of pitching amplitudes αA, frequencies, f

∗, and mean angles of attack,
αM .. Pitching is about the leading edge.
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Figure 4.9: A comparison between the maximum, minimum, and mean lift coefficient attained for
pitching with amplitude αA = 5◦, for a range of mean angles of attack, αM , and frequencies, f∗.
Pitching is about the midchord.
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Figure 4.10: Power spectral densities of the lift force for pitching motion about the midchord with
amplitude αA = 1◦. For clarity, the spectra for each forcing frequency is shifted by one order of
magnitude, so the absolute scale of the vertical axis is not significant.

DISTRIBUTION A: Distribution approved for public release.



60 R/C Soaring Digest

44 CHAPTER 4. LIFT ENHANCEMENT BY PERIODIC PITCHING

Figure 4.11: Instantaneous vorticity fields for pitching about the leading edge (left) and midchord
(right) at a variety of frequencies, with αM = 20◦ and αA = 1◦.
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Figure 4.12: Instantaneous vorticity fields for pitching about the leading edge (left) and midchord
(right) at a variety of frequencies, with αM = 20◦ and αA = 1◦.
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and maximum frequencies considered here. Note that the real and imaginary components of the
eigenvalues (in continuous time) indicate the growth rate and frequency of the associated DMD
modes.

For this mean angle of attack (αM = 20◦), the maximum increase in lift occurrs at f∗ = 0.3.
At this frequency, the DMD eigenvalues are at the frequency of pitching and its harmonics. Since
vortex shedding is clearly observed in Figure 4.11, this suggests that it is locking onto the forcing
frequency. For the surrounding frequencies (f∗ = 0.25 and 0.35), we observe that the eigenvalues
are scattered across a range of frequencies. This suggests that vortex shedding is not fully locking
on to the forcing frequency, and that there is a broad range of frequency content present. We
also find that the second, third and fourth DMD modes all have similar spatial wavelength, again
indicating that certain features persist across a range of frequencies. Note that, unlike POD modes,
DMD modes are not required to be orthogonal, and thus there can exist multiple DMD modes that
are similar to each other, having slightly different frequencies of oscillation.

If we move further away from f∗ = 0.3, we find that the DMD modes again lie on harmonics
of the forcing frequency. In these cases (i.e., for f∗ = 0.2 and 0.4 plotted here, and for other cases
not shown), it appears that the least stable mode in the wake is not being excited, as we are not
close enough in frequency to do so. This also explains why there is no significant lift increase at
these frequencies. The similarity between pitching at the leading edge and midchord suggests that
these observations are not particularly sensitive to pitch-axis location.

Figure 4.14 shows plots of the same quantities and parameters as Figure 4.13, but for pitching
with amplitude αA = 5◦. Broadly speaking, the results are similar, with DMD eigenvalues lying on
the imaginary axis at multiples of the forcing frequency for f∗ = 0.2, 0.3 and 0.4, and located in
a significantly more scattered arrangement with numerous modes of similar frequency content and
spatial structure for f∗ = 0.25 and 0.35. We find that the oscillating modes have higher amplitude
in this case, with the “lock-on” mode having higher amplitude than the mean mode for leading edge
pitching at f∗ = 0.3. We further note that, unlike the case for αA = 1◦, the mean flow (i.e., the
DMD mode with a corresponding eigenvalue close to 0) looks substantially different between low
frequency oscillation, where the wake seems to spread out substantially a short distance downstream
of the airfoil, and high frequency oscillation, where the wake appears to be narrower with regions
of high vorticity persisting far downstream. Referring back to Figure 4.12, the enhanced spreading
of the mean flow is seemingly due to the larger vortices drifting above (for negative vorticity) and
below (positive vorticity) the airfoil as they are shed. This phenomenon could also explain why
the lift-to-drag ratio is often maximized at pitching frequencies slightly larger than those at which
maximum lift occurs. The enhanced spreading at lower frequencies increases drag, so lift-to-drag
benefits exist only at higher frequencies, where the wake remains thinner.

Thus far, we have only analyzed the wake for a case where the base flow is stable. We now turn
our attention to the case, αM = 30◦, where the flow exhibits a vortex shedding limit cycle. Figure
4.15 shows vorticity field snapshots, as well as DMD eigenvalues and modes (only showing the four
highest amplitude modes) for pitching about a mean angle αM = 30◦ with amplitude αA = 1◦, for a
variety of pitching frequencies. The wakes for f∗ = 0.2, 0.3, 0.35 and 0.4 all look very similar, with
high amplitude DMD eigenvalues at the natural vortex shedding frequency, and lower amplitude
eigenvalues at the pitching frequency. This is consistent with Figure 4.10, where the subplot for
αM = 30◦ shows a larger peak at the vortex shedding frequency, and a lower peak at the forcing
frequency. For f∗ = 0.25, the forcing and vortex shedding frequencies are almost identical, which
appears to give stronger vortex formation, and in turn the increase in lift seen in Figure 4.4.
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Figure 4.13: DMD eigenvalues, and the real components of the 4 largest amplitude modes (ordered
by amplitude), for pitching about the leading edge (left), and midchord (right) at a variety of
frequencies, with amplitude αA = 1◦, and mean angle of attack αM = 20◦. Eigenvalues that are
colored red correspond to modes with larger amplitudes.
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Figure 4.14: DMD eigenvalues, and the real components of the 4 largest amplitude modes (ordered
by amplitude), for pitching about the leading edge (left), and midchord (right) at a variety of
frequencies, with amplitude αA = 5◦, and mean angle of attack αM = 20◦. Eigenvalues that are
colored red correspond to modes with larger amplitudes.
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Figure 4.15: Wake snapshots, DMD eigenvalues, and the real components of the 4 largest amplitude
modes (ordered by amplitude), for midchord pitching at a variety of frequencies, with amplitude
αA = 1◦, and mean angle of attack αM = 30◦. Eigenvalues that are colored red correspond to
modes with larger amplitudes.
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4.4 Discussion and conclusions

For angles of attack below the critical angle where unforced vortex shedding first occurs (αc), it was
found that pitching at a certain frequency can excite vortex shedding in the wake, leading to higher
mean lift. The magnitude and width in frequency range of the lift increment increases significantly
as the forcing amplitude increases. This is perhaps a similar phenomenon to the widening of the
“resonance horn”[20] observed by Choi et al.[29] for the case of a surging and plunging airfoil
(though in that case, the system was above the critical bifurcation parameter). Note, however,
that comparing Figures 4.4 and 4.14 indicates that there can be a significant increase in lift even
without frequency lock-on.

For αM above the critical angle for vortex shedding, there is a similar peak in the mean lift
coefficient when the pitching frequency is close to the natural vortex shedding frequency or its first
harmonic. When the natural and forcing frequencies are different, the interactions between the two
frequencies can lead to complex frequency spectra in the forces and wakes. Note in particular that
pitching some amount below the vortex shedding frequency can lead to a notable decrease in mean
lift for αA ≥ 5◦ at αM ≥ 35◦.

While periodic pitching at the preferred frequency where vortex shedding is excited or enhanced
also leads to an increase in drag, the differences in effect that pitching has on the two force compo-
nents leads to an increase in the lift-to-drag ratio for frequencies slightly above the frequency for
which the lift is maximized. It is interesting to note that while the frequency at which the maximum
lift increment occurs decreases slightly as αM increases (in agreement with the slight decrease in
natural vortex shedding frequency), the frequency giving maximum lift-to-drag ratio increases with
αM . Indeed, for high αM it seems that the maximum lift-to-drag ratio typically occurs between
the peaks in lift and drag located at the vortex shedding frequency and its first harmonic, where
there is a local lift minimum, and thus also a slightly more substantial drag minimum.

Beyond αc, the interactions between the pitching and vortex shedding frequencies can lead to
complex frequency spectra in both the forces (as seen in Figure 4.10) and wakes (Figures 4.13-
4.15). There are numerous methods by which one can analyze frequency content, and here we show
how DMD can clearly distinguish between cases where all frequencies present are harmonics of the
pitching frequency, and where there is a broad range of frequency content.

There has been much effort in the past to understand, model, and predict unsteady aerody-
namic forces, moments, pressures, and indeed many other quantities of interest for moving airfoils.
Particularly in the case of separated flow, these dynamics are often highly nonlinear. One might
seek to get around this by linearizing about a certain fixed point (say an angle of attack), in the
hope that a linear model would at least be locally accurate. The findings presented here suggest
that such an approach might be problematic, since a linear model (e.g., a transfer function) can
only predict the magnitude and phase of a response to sinusoidal forcing, but not any change in
the mean value. Thus, such effects must be accounted for separately, or a more complex modeling
framework used.

Further work in this investigation will compare the findings to the results of stability analyses
of the stable and unstable equilibrium wakes, and the mean of the vortex shedding wake, and will
use wind tunnel experiments to investigate whether the phenomena observed persist for higher
Reynolds numbers.
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Chapter 5

Nonlinear reduced-order models of
fluids systems using extended
dynamic mode decomposition

Data-driven approximations to the Koopman operator have much potential for capturing and il-
luminating the dynamics exhibited by the Navier-Stokes equations. In this work, we show that
the elements of an identified finite dimensional approximation to the Koopman operator can be
utilized for the construction of accurate nonlinear reduced-order models. We present a modification
to the extended dynamic mode decomposition algorithm through the inclusion of a regularization
parameter, which we find often gives more accurate models. The performance of models identified
using our proposed method are compared to those found by performing a Galerkin projection of
the governing equations onto proper orthogonal decomposition modes, for the canonical case of
two-dimensional flow past a circular cylinder. We demonstrate that identifying nonlinear models
using EDMD is particularly advantageous when the data available is noisy, or is only available
within certain regions of space or time.

5.1 Introduction

A much-desired goal in fluid mechanics, and indeed many other fields, is to obtain simple models
that are capable of predicting the behavior of seemingly complex systems. Low-dimensional models
can not only improve our fundamental understanding of such systems, but are often required for
purpose of efficient and accurate prediction, estimation and control. Broadly speaking, one can
obtain low-dimensional information about a system (whether it be in the form of a reduced-order
model, or simply spatial modes corresponding to certain energetic or dynamic characteristics)
in numerous ways, potentially using some combination of data collected from simulations and
experiments, and theoretical knowledge of the system, such as the governing partial differential
equations (PDEs).

Purely data-driven methods can include those developed particularly for fluids applications,
such as the dynamic mode decomposition (DMD) [125, 126], or those which are appropriated from
other communities, such as the eigensystem realization algorithm (ERA) [82, 72], which was first
applied to study spacecraft structures, but has more recently been appropriated to model a wide
range of fluids systems [25, 2, 68, 69, 22, 23, 15, 67, 49]. DMD has been used to study a wide range
of problems arising in fluid mechanics (e.g., [119, 128, 127, 100, 129, 43, 58, 70, 83, 93, 55, 123, 45]),
with many subsequent variants further increasing its range of utility and applications [27, 164, 149,
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71, 62, 63, 40, 106, 124, 98, 122]. One limitation of the methods mentioned so far is that (when
considered in the context of data-driven reduced-order modeling techniques) they are linear, in the
sense that the reduced order model that is identified is in the form of a linear system of ordinary
differential equations (ODEs).

While there have been a number of examples of nonlinear data-driven modeling techniques
used in fluids applications [85, 102, 104, 52, 11, 37, 77, 60, 39, 24], their widespread use has been
more limited, and the underlying theory is less established, than linear techniques. More details
concerning the application of data-driven modeling techniques in fluid mechanics can be found in
recent review articles [21, 113].

Perhaps the most common method to obtain a nonlinear reduced order model for fluids systems
comes via a projection of the governing equations onto a low-dimensional basis that is optimal for
capturing the energy of the data, i.e., the proper orthogonal decomposition (POD) [86, 17, 66], a
procedure referred to as Galerkin projection. Galerkin projection (GP) has been used to extract
models for many different fluids systems, a non-exhaustive list includes flow past a cylinder at
low Reynolds number [41, 96, 95], grooved channels [41] the wall region of turbulent boundary
layers [6, 103], flat plate boundary layers [111], turbulent plane Couette flow [91, 134], turbulent
pipe flow [19] cavity oscillations [116, 115], mixing layers [110, 150, 13], and compressible flows
[118]. One significant drawback of GP models is that they ignore modes that are low in energy,
but are required for the dissipation of energy in the full system. A number of modifications have
been proposed to address this concern, as well as other issues with such models. Refs. [6] and
[103] use an eddy viscosity term that accounts for energy dissipated into unmodeled modes, [99]
investigates a hierachy of eddy viscosity formulations, while [157, 158] incorporate LES closure
modeling strategies. Refs. [35] and [36] summarize a number of calibration techniques that can
be used to improve the accuracy of Galerkin models, and also discuss the various ways in which
the error of such models can be quantified. Ref. [12] employs a subspace rotation technique to
stabilize the models, which, unlike other calibration techniques, maintains consistency with the
original governing equations. Ref. [13] imposes constraints to balance the turbulent kinetic energy
of the resulting model. All of these modifications of Galerkin projection increase the “data-driven”
nature of the method. Ref. [97] gives an in-depth summary and analysis of many issues, variations,
progress, and open problems on the topic of Galerkin projection models, while [84] gives a clear
expository introduction of the main ideas in Galerkin projection, with examples.

While we mentioned above that DMD could be classified as a “linear” method, connections
between the DMD algorithm and the Koopman operator [119, 89] give promise that it can ultimately
be used to model and understand nonlinearities. In this work, we will propose a method for
obtaining nonlinear reduced order models that is based upon a recently-developed extension of
DMD [160], referred to as extended DMD (EDMD), in which nonlinearities can be accounted for
by an appropriate choice of observables. In particular, we will explore how this algorithm can be
tailored to identify nonlinear models that have the same (or similar) form as those that would be
obtained through projection of the governing equations onto a low-dimensional basis obtained from
data. In this sense, the nonlinear models that we identify in this work will come from EDMD, but
will have similar form to those given by GP. We note that this is a different approach to using
dominant DMD modes as an alternative to POD modes for a basis for projection [143]. A further
recently-proposed approach uses DMD to efficiently approximate just the nonlinear component of
the dynamics [5], as an alternative to the discrete empirical interpolation method [14, 26].

We lastly note that several previous works consider this dichotomy between using projection
onto governing equations, or using time-resolved data, to identify models, most often for linear
systems. For example, [69] considers models identified directly using ERA and models identified
by considering each of the pertinent physical processes individually, while [64] discusses the use of
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both GP models and ARMAX system identification methods with physically motivated terms to
model (and subsequently control) flow over a backwards-facing step.

The structure of this work is as follows. Sect. 5.2 introduces POD and Galerkin projection.
Aside from GP being used for the purposes of comparison to EDMD models, the POD section will
also be important for the purposes of defining observables for EDMD. Sect. 5.3 describes DMD and
EDMD, and introduces the particular form of the EDMD, as well as a regularized variant thereof,
that will be utilized for system identification purposes. Models will be identified and tested in
Sect. 5.4 on data obtained from numerical simulations of flow past a circular cylinder, the results
of which are discussed in further detail in Sect. 5.5.

5.2 Proper orthogonal decomposition and Galerkin projection

While the main focus of this work concerns reduced-order models obtained from EDMD algorithms,
GP models will serve as both a basis for comparison of model performance, and to guide our choice
of observable functions when using EDMD. With this in mind, in this summary we give a brief
summary of POD and Galerkin projection.

5.2.1 Proper orthogonal decomposition

The goal of the proper orthogonal decomposition (POD) is to obtain a set of empirical spatial
modes that optimally represent a given dataset from an energetic standpoint. Assume that we can
decompose the dynamics of some system u(x, t) (which could be the time-varying velocity field of
a fluid, say) by

u(x, t) = u0(x) +

∞∑
i=1

ui(x)ai(t), (5.2.1)

where u0(x) is some fixed (often average) data, and {ui(x)}∞i=1 are a set of orthonormal basis
functions (modes). POD takes these modes to be those which successively capture the most energy
of the velocity field. Each POD mode ui satisfies the integral

∫

Ω
Ri,j(x, x

′)ui(x
′)dx′ = λui(x),

where Ri,j(x, y) = E[ui(x)uj(y)], with E being the expectation. As indicated by Eq. (5.2.1),
POD is normally performed after first subtracting the mean (or perhaps an equilibrium point)
from the data. This approach has the advantage that u0 satisfies the required non-homogeneous
boundary conditions, meaning that all other modes ui will satisfy homogenous boundary conditions,
so any linear combination of modes of the form given by Equation (5.2.1) will automatically satisfy
the correct boundary conditions of the problem at hand. In discrete terms, if we arrange finite-
dimensional data collected from a simulation or experiment into a matrix Y , with each column
representing a snapshot of data at a given time, then the POD modes are the columns of U in the
singular value decomposition Y = UΣV ∗. Here the ith entry of the diagonal matrix Σ corresponds
to the energy contained in the ith POD mode. In this discrete formulation, for simplicity we are
omitting any rescaling of the data that should be performed so that the modes are orthonormal
with respect to the usual inner product. That is, if ui and uj are columns of U , then we really
should have ∫

Ω
u∗
j (x

′)ui(x
′)dx′ ≈

n∑
k=1

u∗
j (xk)ui(xk)dxk = δij ,
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rather than u∗
jui = δij . The original data Y can then be represented in terms of POD coefficients

by Ỹ = U∗Y . If we wish to reduce the dimension of this data, we may do so in an optimal way
(with respect to energy content) by simply truncating the columns of U beyond a certain point,
which corresponds to removing POD modes that are of sufficiently low energy. Doing this gives
a reduced order approximation of the data Ỹr = U∗

rY , where Ur contains the first r columns of
U . Note that there are alternative truncation techniques that may be more effective than energy
maximization for certain applications, for example balanced POD [112] gives a reduced order linear
state space model that is optimal with respect to a given set of sensors and actuators.

5.2.2 Galerkin projection

The idea behind GP is to approximate the governing PDEs that describe a given system with a
low-dimensional set of ODEs. This is accomplished by projecting the equations onto spatial POD
modes identified using the methods described in Sect. 5.2.1. We begin with the incompressible
Navier–Stokes equations:

∂u

∂t
= −(u · ∇)u− ν∆u−∇P

∇ · u = 0.
(5.2.2)

If we take the (spatial) inner product of Eq. (5.2.2) with a given mode uj , we obtain
〈
∂u

∂t
,uj

〉
= −〈(u · ∇)u,uj〉 − ν 〈∆u,uj〉 − 〈∇P,uj〉 . (5.2.3)

Substituting in the finite-dimensional approximation of Eq. (5.2.1), we obtain

ȧ = La+Q(a,a) + f , (5.2.4)

were L is a linear operation (i.e., a matrix), Q is a bilinear operator (which can be represented as
a 3-tensor), and f is a vector, each defined based on the identified spatial POD modes by

Lij = −ν 〈∆uj ,ui〉 , Qijk = −〈(uj · ∇)uk,ui〉 , f = −〈∇p,ui〉 . (5.2.5)

This gives a means of approximating the Navier-Stokes equations by a set of nonlinear ODEs. As
mentioned in Sect. 6.1, there are many modifications that have been proposed for this general
procedure, most typically to account for the energy transfer to unmodeled modes (i.e., the energy
cascade to finer spatial scales). For cases where spatial symmetries exist (e.g., in the streamwise
and azimuthal directions for circular pipe flow), one can show that the POD modes must become
Fourier modes, which can simplify their computation. It is also possible to “factor out” such
symmetries by using an optimally chosen moving frame of reference[114, 117].

5.3 Reduced-order models using extended dynamic mode decom-
position

This section introduces our proposed modeling approach. Sect. 6.2.1 describes the DMD algorithm,
before Sect. 5.3.2 discusses the EDMD extension and how it may be used to obtain nonlinear
models. Sect. 5.3.3 gives a regularized modification to EDMD that we find to be advantageous
when using EDMD for such purposes. When viewed as a method for reduced-order modeling, the
main difference between the approach discussed here and that introduced in Sect. 5.2 is in how the
temporal dynamics are identified: GP uses the governing equations, whereas DMD/EDMD uses
only data to identify dynamics.
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5.3.1 Dynamic Mode Decomposition

Following the notation introduced in [113], suppose we collect pairs of snapshots of data (yi,y
#
i ),

which are separated by a fixed time interval ∆t. yi is often taken to be a velocity field snapshot, but
more generally it is a vector consisting of a number of observations/measurements of an evolving
dynamical system at a given point in time. We arrange the snapshot pairs as columns of the
matrices Y and Y # (where the data in a given column of Y # was collected ∆t after the equivalent
column of Y ). Note that if we begin with a sequential time-series of data, then Y and Y # are
simply formed using all of the snapshots excluding the last and first columns, respectively. Let Y
and Y # each be n by m matrices, so we have m pairs of snapshots, each of size n. One can define
(see [149]) DMD modes and eigenvalues as the eigendecomposition of the matrix

A = Y #Y +, (5.3.1)

where Y + is the Moore-Penrose pseudoinverse of a matrix Y . While useful as a definition, one does
not typically compute A directly, since in the typical case where n � m, A is a very large n × n
matrix with rank at most min(m,n). Thus it is usually beneficial to first project the data onto
a lower dimensional subspace, which is often taken from the columns of U in the singular value
decomposition Y = UΣV ∗ (possibly truncating columns of U corresponding to small singular
values). From Sect. 5.2.1, this subspace consists of the POD modes of the data. If we let ỹ = U∗yk

be the representation of a given snapshot y in the POD basis, and let Ỹ = U∗Y and Ỹ # = U∗Y #

following the same notation as introduced in Sect. 5.2.1, then the equivalent of Eq. (6.2.1) in POD
space is

Ã = Ỹ #Ỹ +. (5.3.2)

A reduced order approximation of the identified dynamics can be obtained by restricting the number
of POD modes upon which to project. This is achieved by taking the first r columns of U , and
working in the space of POD coefficients ak = U∗

r yk. DMD then results in a simple linear dynamical
system model of the form

ak+1 = Ãrak, (5.3.3)

where Ãr = U∗
rY

#Y +Ur.

5.3.2 Extended dynamic mode decomposition and nonlinear models

A fundamental limitation to models extracted from DMD is their linearity, which can make them
entirely unable to model fundamentally nonlinear features that arise in fluid flows. In the context
of DMD being an approximation of the Koopman operator, this limitation amounts to Koopman
eigenfunctions not lying within the span of the data. Following [160], rather than applying the
DMD algorithm directly to the state y, we may define to define a set of observables ψ(y) (where
ψ : Rn → Rk for some k) that span a space more conducive to approximating the true dynamics.
Explicitly, we may proceed with the same DMD procedure described in Sect. 6.2.1, but take the
columns of the matrices Y and Y # to be pairs (ψ(yi), ψ(y

#
i )). The EDMD matrix (which can be

viewed as a finite-dimensional approximation to the Koopman operator) is then given by

A = Y #Y + =
[
ψ(y#

1 ) ψ(y
#
2 ) · · ·ψ(y

#
m)

]
[ψ(y1) ψ(y2) · · ·ψ(ym)]+ . (5.3.4)

While ψ(Y) = U∗
rY gives an optimal transformation of the data from an energetic perspective (and

is what Eq. (6.2.2) represents in the EDMD framework), it might not be a suitable transformation
for correct identification of the dynamics. To this end, we use the form of Galerkin projection models
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to guide an alternative transformation. Expressing the POD coefficients as before by a = U∗
r y, we

let

q = ψ(y) =

[
a

vec (a⊗ a)

]
. (5.3.5)

Here vec (a⊗ a) denotes a vector of all non-redundant quadratic couplings between POD coeffi-
cients, i.e. (a1)

2, a1a2, (a2)
2, etc. If we keep r POD modes, then we have observables of dimension

k = r + r(r + 1)/2, with the possible addition of an additional constant observable to account for
the mean of the data. We will not closely concern ourselves with how closely we may approximate
the true Koopman operator using such a choice of observables, but will rather show that, in any
case, the elements of the identified dynamics on this space of observables may be used to construct
a nonlinear model of the system dynamics. To this end, we start by explicitly writing the identified
dynamics using this approach by




a1
a2
...
ar

(a1)
2

a1a2
...

(ar)
2



t+∆t

=




l11 l21 · · · lr1 q111 q121 · · · qrr1
l12 l22 · · · lr2 q112 q122 · · · qrr2
...

...
. . .

...
...

...
. . .

...
l1r l2r · · · lrr q11r q12r · · · qrrr
l111 l211 · · · lr11 q1111 q1211 · · · qrr11
l112 l212 · · · lr12 q1112 q1212 · · · qrr12
...

...
. . .

...
...

...
. . .

...
l1rr l2rr · · · lrrr q11rr q12rr · · · qrrrr







a1
a2
...
ar

(a1)
2

a1a2
...

(ar)
2



t

. (5.3.6)

Focusing on a single POD coefficient (i.e., one of the first r rows of Eq. 5.3.6), we have that

ak(t+∆t) =

r∑
i=1

likai(t) +

r∑
i,j=1
j≤i

qijk ai(t)aj(t), (5.3.7)

which is the same form as Eq. (5.2.5), but in discrete-time. Thus, by taking the first r rows of the
A matrix obtained from performing EDMD with observables given by Eq. (5.3.5), we may obtain
a system of nonlinear equations that can accurately model the evolution of the POD coefficients of
the system in discrete time.

While we may expect that the first r rows of A give an accurate model for the evolution of POD
coefficients, in general we should not expect the same for the evolution of the quadratic monomials
of POD coefficients. This is because the equations for the evolution of these terms should involve
cubic terms, which are not spanned by our observables. Incidentally, this suggests that using any
basis of polynomial observables for approximating the Koopman operator for the Navier-Stokes
problems might be problematic. One possible alternative, not explored in this work, is to use the
Kernel variant of EDMD [161] with an appropriately chosen kernel function that better spans the
Koopman eigenfuctions.

5.3.3 A modification to DMD/EDMD

When in the least squares regime (i.e., when there are fewer observables than the number of
snapshot pairs), Eqs. (6.2.1) and (5.3.4) can give solutions with large entries in A. Empirically,
these entries can be significantly larger in magnitude than those expected, say, from performing
a Galerkin projection. It also appears that this “overfitting” can give models that lack stability.
To mitigate these observations, we propose a simple modification to DMD/EDMD that penalizes
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the size of entries in A. Note that the same process can be applied to both DMD and EDMD,
whenever the data matrix Y has more columns than rows. When this is the case, Eq. (5.3.4) gives
the solution to the minimization problem

A = argminM‖MY − Y #‖2F . (5.3.8)

We may add a penalization on the size of the entries of A to formulate a joint least squares problem

A = argminM

(
‖MY − Y #‖2F + β2‖M‖2F

)
, (5.3.9)

where β is a parameter that determines the extent to which large entries in M are penalized. The
element-wise nature of the Frobenius norm means that Eq. (5.3.9) may be rearranged to give

A = argminM

∥∥∥M [Y βI]−
[
Y # 0

]∥∥∥
2

F
, (5.3.10)

where I and 0 are appropriately sized matrices. Note that this modification of DMD/EDMD is
similar to the principle of Tikhonov regularization. Eq. (5.3.10) has an explicit solution, given by

A = Y # [Y βI]+ . (5.3.11)

We remark that this regularization is equivalent as adding to the data set pairs of snapshots where
each observable goes from some nonzero value β to 0 over a timestep of ∆t. It should also be
noted that Tikhonov regularization methods have been used previously as a method of calibrating
GP models[35], and have also been used for other system identification techniques, such as finite
impulse response models[76]. More generally, one can add a variety of different forms of penalty
terms to obtain a desired balance between competing objectives. For example, in the context of
EDMD, [162] uses a L1,2 minimization to obtain what in our notation would be a solution with a
small number of nonzero columns of A.

5.4 Example: flow past a circular cylinder

We test our proposed method using the much-studied example of 2D flow past a circular cylinder.
Beyond a critical Reynolds number of approximately 47 [107], the equilibrium becomes unstable
and the system will instead converge upon a limit cycle characterized by periodic vortex shedding.
We take data for Re = 60, with the initial condition close to the unstable equilibrium. The data
captures the initial growth of an instability near the unstable equilibrium, through to convergence
to the limit cycle. This is an example where regular DMD will fail (in the sense of identifying an
appropriate reduced order model), since the process (which is a Hopf bifurcation) is fundamentally
nonlinear. In particular, beyond the critical Reynolds number, the nonlinear terms must become
non-negligible to balance the growth of the unstable linear dynamics, leading to the observed limit
cycle behavior.

We will explore the performance of both EDMD and GP models on this system for a range of
data, including that which is noisy and spatially truncated or sparse. The data was obtained from
direct numerical simulation using an immersed boundary projection method [139, 34]. Selective
frequency damping [3] was used to obtain the unstable equilibrium solution. To focus on the
transitional region of the dynamics, the snapshots to be used were collected after first running the
simulation from the unstable equilibrium for 250D

U time units. The simulation was performed on a
domain consisting of five nested grids, as shown in Fig. 5.1. Each grid is uniform, with the finest
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Figure 5.1: Computational domain used for numerical simulation of flow past a circular cylinder.
Dashed lines represent the borders of each nested grid. The gray shading denotes the region from
which data was collected for modeling purposes

grid having a grid spacing of 0.02D in each direction, and each successively larger grid having
double the grid spacing of the previous. The full domain has size 256D × 64D. This large domain
was chosen so as to resolve both the flowfield on the region of the grid used for analysis (shown in
gray), and the forces incident on the cylinder, to a high degree of accuracy.

This comparison between the performance of EDMD and GP models begins in a scenario where
both models work relatively well: where clean data encompassing a large spatial domain is available
across a window of time spanning all of the distinct dynamic regimes. While we find that GP models
can indeed outperform the EDMD models that we identify in favorable conditions, we will proceed
to demonstrate that in the cases where the data is noisy or restricted, EDMD models can perform
substantially better.

5.4.1 Data arrangement and selection

The data to be used was taken from the gray shaded region in Fig. 5.1. As mentioned previously,
we evolve the system from the equilibrium for some time (250D

U ) before collecting data, then collect
1000 snapshots separated by a uniform timestep ∆t = 0.2D

U . This time interval spans the growth
of the instability from near the equilibrium, through to the convergence of the flow to a periodic
limit cycle. We note that Galerkin projection in particular is quite sensitive to the resolution and
extent of data chosen. For this reason, we do not claim that the GP models that we identify are
the most accurate that can be obtained for such a system, but still serve as a basis for comparison
to the EDMD models that are identified for the same choice of data.

The EDMD procedure requires a selection of observables. Despite narrowing down this choice
substantially by choosing to work with linear and quadratic monomials of POD coefficients, there
can still be some additional ambiguity that should be explicitly clarified. To begin with, one must
decide how whether to subtract the mean flow from the data before applying POD. This step is
almost always performed when performing POD, partly because then any reconstruction of the
flow using a linear combination of POD modes will automatically satisfy the required boundary
conditions [66]. Conversely, it is almost never done with DMD; doing so can lead to an undesirable
equivalence to taking a discrete Fourier transform [27]. Furthermore, if one is to subtract a “mean”,
for this flow one could conceivable take this to be any of the mean of the limit cycle, the mean of the
data, or even the unstable equilibrium velocity field. To emphasize the fact that we are approaching
this procedure from a data-driven perspective, and to be consistent with the subspace used for both
procedures, here we first subtract the mean of the data before performing POD (for both GP and
EDMD models). Note that this is different to what is typically done when constructing GP models
for such a system, where the mean is most typically taken to be the mean of the limit cycle (e.g.,
[95]). The mean and POD modes identified in this manner, as well as their relative energy content
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and the temporal evolution of their coefficients, are shown in Fig. 5.2.

We further note that subtracting the mean of the velocity field before performing POD does not
result in all of the observables used for EDMD having zero mean, as (ai)

2 is always non-negative.
When performing EDMD, we can also choose whether to explicitly include this mean mode as
an observable, which amounts to allowing for a constant term in Eq. 5.3.6. We will most often
choose to do this, though will discuss this in more detail later. On top of all of these details, the
regularization introduced in Sect. 5.3.3 introduces an additional parameter whose value must be
set, which we will discuss in the next section.

5.4.2 Comparison between EDMD and GP models, regularization, and model
order dependence

This section analyzes the performance of both EDMD and GP models of a range of orders in
modeling the dynamics of the flow past a cylinder. We begin with some sample results. Fig. 5.3
shows the performance of both Galerkin projection, and the EDMD approach outlined in Sect. 5.3,
in identifying a model that can predict the evolution of the first three POD coefficients. For this
system, the dynamics of these coefficients are known to evolve on a paraboloid [95]. We observe
that the EDMD model is more accurate than the GP model in terms of obtaining both the correct
transient and limit cycle behavior. Fig. 5.4 shows that the same findings hold when the dimension
of the models increase to 9. We keep β at a fixed value of 0.5 for both of these examples, which
will be the default unless otherwise mentioned.

In order to study more systematically the accuracy of models of various order, we compare in
Fig. 5.5 the identified limit cycle amplitude (defined based on the coefficient of the first POD mode)
and frequency for models of order 3–28. As well as showing results for EDMD models identified
with β = 0.5, we additionally show the performance of models identified with an optimized value of
β, where the optimal is found based on a direct search over the range 0 ≤ β ≤ 2. This comparison
shows that the results are relatively insensitive to β, and that the one initially chosen value tends
to perform reasonably well across all model orders. It would be possible, however, to develop more
sophisticated methods to tune β using the data available. To do this, one could apply standard
extrema-seeking algorithms to find a value of β that allows the identified model to best match the
data, by some chosen metric. One could also explore the possibility of replacing the βI term in
Eq. 5.3.10 with a diagonal matrix with different entries, though this then loses the direct connection
to the joint least squares problem formulated in Eq. 5.3.9.

In general, EDMD models are mode accurate than GP models at predicting the limit cycle
characteristics for models of order less than 8, while GP models are more accurate for high order,
except for models of order 14, where the GP model performs uncharacteristically poorly. While
for this simple system the high order models are not required to obtain an accurate representation
of the system dynamics, it is important to verify that the proposed algorithm remains capable of
identifying stable and accurate models as the model order increases, in order to be of use for more
complex fluids systems.

5.4.3 Model prediction for untrained conditions

An important feature of any identified model is the ability to predict the behavior of the system
along trajectories in phase space that are not contained in the data used for model identification.
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(a) (b)

(c) (d)

(e) (f)
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Figure 5.2: (a) Mean mode, (b) relative energy content and (c) cumulative energy content of the
first 30 POD modes identified from data collected as the flow transitions from near the unstable
equilibrium to the limit cycle. (d)-(l) Contours of streamwise velocity for the first nine POD
modes, and their corresponding time-varying coefficients
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Figure 5.3: Performance of 3rd order GP and EDMD nonlinear models in predicting the evolution
of POD coefficients for transitional flow past a cylinder, showing (a) time evolution and (b) phase
portrait plots. The Galerkin and EDMD phase portrait models are allowed to evolve for 800
dimensionless time units to confirm limit cycle behavior
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Figure 5.4: Performance of 9th order GP and EDMD nonlinear models in predicting the time-
evolution of POD coefficients for transitional flow past a cylinder, showing (a) time evolution and
(b) phase portrait plots. Only the first 5 modes are shown on the left, while the phase protein
shows the projection onto the first 3 modes. The Galerkin and eEMD phase portrait models are
allowed to evolve for 800 dimensionless time units to confirm limit cycle behavior
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Figure 5.5: Prediction of the limit cycle amplitude (a) and frequency (b) of the first POD mode
from both EDMD and GP models
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Figure 5.6: Performance of 3rd order GP and EDMD nonlinear models in predicting the evolution
of POD coefficients for transitional flow past a cylinder, showing (a) time evolution and (b) phase
portrait plots. The initial condition is taken to be the mean of the limit cycle

This ensures the practical utility of such a model, and increases confidence that the “correct” system
dynamics are being captured. We show in Fig. 5.6 the performance of 3rd order EDMD and GP
models in predicting the evolution of the first 3 POD coefficients, starting at the mean of the limit
cycle. We observe that the GP model more accurately captures the initial transient as the flow
approaches the slow manifold (paraboloid), though as before the EDMD model is more accurate in
predicting the subsequent approach to the limit cycle. Note that there are two main reasons why
this model might be somewhat inaccurate in the untrained region: not only are the dynamics in
this region untrained, but the POD basis is additionally no longer energetically optimal (in terms
of energy) for this dataset, so low order models in particular might not capture features that are
both energetically and dynamically important.
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Figure 5.7: Performance of 3rd order GP and EDMD nonlinear models in predicting the evolution
of POD coefficients for transitional flow past a cylinder, showing (a) time evolution and (b) phase
portrait plots. The Galerkin and EDMD phase portrait models are identified from data that is
corrupted by noise of standard deviation σ = 0.05U . β = 0.5

5.4.4 Noisy data

An important quality for any modeling procedure to possess is a robustness to noisy data, such as
that which might be acquired from experiments. In Fig. 5.7, we show the results of identifying 3rd
order models to the same data as considered previously, but corrupted by Gaussian white noise,
with magnitude of 5% of the freestream velocity. It is observed that the EDMD model retains it’s
accuracy, whereas the GP model captures none of the observed features of the system. This result
is interesting, since the noise-corrupted data is actually being used to identify the dynamics in the
case of EDMD, whereas GP only uses the data to obtain a spatial basis. As well as showing the
robustness of the EDMD modeling procedure, these results highlight the sensitivity of GP to this
basis selection.

5.4.5 Data from a restricted spatial domain

Another potential drawback of GP models is that they require spatially resolved data across a
wide domain, ideally such that the boundary conditions are constant. In Fig. 5.8, we attempt to
obtain reduced order models using a small portion of the domain. Unlike GP, EDMD is still able
to produce an accurate model with such a restricted data set. Here, we are only using the data
collected from this limited domain to compute POD, so the modes that are computed will differ
somewhat from the modes shown in Fig. 5.2. The fact that EDMD models in this case retain their
accuracy for both noisy data and restricted spatial domains suggests that this modeling framework
could be particularly useful for experimental data, which often possesses both limitations.

An advantage of EDMD is that it does not require spatially resolved data, which is required
for the computation of spatial derivatives in GP. In Fig. 5.9, we show that EDMD can produce an
accurate ROM with only data from a small number of sparse, randomly chosen points. This gives
cause for optimism that the method could additionally be used in experiments for which only point
sensor measurements are available, rather than the spatially resolved flowfields, which can be more
costly and time consuming to obtain. While the selection of the sensor locations in this case was
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(c)

Figure 5.8: Performance of 3rd order GP and EDMD nonlinear models in predicting the evolu-
tion of POD coefficients for transitional flow past a cylinder, showing (a) time evolution and (b)
phase portrait plots. Only data contained from inside the square shown in (c) is used for model
identification. The EDMD models were obtained with β = 0.1
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Figure 5.9: Performance of 3rd order GP and EDMD nonlinear models in predicting the evolution
of POD coefficients for transitional flow past a cylinder, showing (a)time evolution and (b) phase
portrait plots. Only data sampled at green circles shown in (c) are used for model identification

random, we observed empirically that best results were obtained when the sensor locations were
spread across different spatial regions of the domain. When using only a small number of point
sensors, we found that better models were obtained when we did not include a constant term in
our set of observables. We additionally did not use any form of regularization.

5.4.6 Data from limited temporal sampling

In this section, we explore the ability of EDMD and GP models in predicting the evolution of a
system using only a small amount of temporal data. As in Sect5.4.5, we compute POD modes
(including the mean modes) from the subset of data that is used. Note in particular that this
means that the POD basis that we use as our state space will be different to those identified from
the full dataset. In Fig. 5.10, we show the results of applying both EDMD and GP when using
only the first 40%, 20%, and 10% of the time series of data used for the previous sections. We find
that, even when the data available is significantly reduced and has clearly not reached the limit
cycle, the EDMD models still accurately predict the presence (and to some extent, the location) of
the limit cycle. This is in contract to the GP model, where the limited data available renders the
model qualitatively incorrect for all amounts of data used. Note that the results in this section did
not use any form of regularization.
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Figure 5.10: Performance of 3rd order GP and eDMD nonlinear models in predicting the evolution
of POD coefficients for transitional flow past a cylinder, showing (a) time evolution and (b) phase
portrait plots. Models are identified using only the first 400 (top), 200 (center) and 100 (bottom)
snapshots of data, as shown
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5.5 Discussion and conclusions

This work has introduced a method to extract low-order, nonlinear models from time-resolved data,
by utilizing an extension of the DMD algorithm. Through the use of a variety of different types of
data from a simple example of a nonlinear fluids system, we have attempted to evaluate the relative
performance of this method in a range, in comparison with Galerkin projection.

We believe that the advantages of the present approach are numerous. We have demonstrated
that this data-driven approach appears to be more robust to noisy data, and exhibits greater
flexibility in terms of the spatial extent and resolution of data for which the method produces
accurate models. We therefore hold strong hopes that this method will be useful in particular to
model experimental data, which often contains such limitations.

Beyond this, the present method requires no explicit knowledge of the underlying governing
equations, though here knowing at least the form of the nonlinearity was advantageous. In par-
ticular, note that the correct form of the observables is most likely important when the nonlinear
model is used to extrapolate a small amount of data, and ultimately correctly predict the limit
cycle in Sect. 5.4.6. In other words, if the correct form of the nonlinearity is known, then even a
small sample of data can be sufficient to identify a model that is at least qualitatively accurate.
This finding has important implications for more complicated systems, where sampling across all
possible regimes and/or locations in phase space may be infeasible.

In Sect. 5.4.1, it was observed that EDMD models are particularly accurate when the dimension
of the model is small, in comparison to both GP models of the same order, and EDMD models of
higher order. The fact that GP models are less accurate for lower model orders is unsurprising, since
(without any additional modification) they have no way of accounting for the effect of unmodeled
modes. EDMD models, on the other hand, can at least account for the time-averaged effect of
modes that are not explicitly included as variables. Note, however, that unmodeled modes with
highly intermittent dynamics could be impossible to accurately account for. As the model order
increases, GP models should be expected to become more accurate, as the effect of unmodeled
modes reduces. Conversely, we find that EDMD models can become less accurate and robust,
possibly due to the rapid increase in the number of parameters requiring to be fit. Note that a
phenomena has been observed previously in polynomial identification [102].

The mathematical machinery behind DMD and it’s variants involves a least squares (or mini-
mum norm, in the underconstrained case) fit of data. In this sense, the method presented in this
work shares strong similarities with a number of other methods that have been used to identify
nonlinear systems in fluids, such as polynomial identification [102], modified quadratic stochastic es-
timation [94] Volterra system identification [11], and linear parameter varying system identification
[60], which all employ a similar type of least-squares coefficient-fitting methodology in their respec-
tive algorithms. The recently developed SINDy [24] (sparse identification of nonlinear dynamics)
also employs a similar basic framework, though with an additional sparsity-promoting algorithm
to decide upon the appropriate observables from a larger library, which is particularly useful when
the form of the nonlinearity is unknown. In this sense, we do not claim that the algorithm we use
is exceptionally novel, but hope that this exposition, both in terms of the connections of DMD
and Koopman theory, and in highlighting a number of situations where such a modeling approach
might be advantageous or necessary. On the former point, one could hope that EDMD, with the
correct choice of observables, can allow for accurate prediction not just of Koopman eigenvalues
and eigenmodes, but also Koopman eigenfunctions. There is indeed strong evidence to suggest that
identified Koopman eigenfunctions can indeed give an accurate characterization of the dynamics of
the cylinder wake near the limit cycle [7]. We do not make any claims that we have achieved such
convergence here over the full transient regime, but rather show that the results can still be useful
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from a practical, model-reduction standpoint. We do not make any claims that we have achieved
such convergence here, but show that the results can still be useful from a practical, model-reduction
standpoint. As well as pursuing this direction, further work could seek to utilize such models for
purposes of flow control. Preliminary investigations also suggest that such EDMD-based models
can be effective at identifying stability properties, such as eigenvalues of the linearized system at
equilibrium points.
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Chapter 6

Characterizing and correcting for the
effect of sensor noise in the dynamic
mode decomposition

Dynamic mode decomposition (DMD) provides a practical means of extracting insightful dynamical
information from fluids datasets. Like any data processing technique, DMD’s usefulness is limited
by its ability to extract real and accurate dynamical features from noise-corrupted data. Here we
show analytically that DMD is biased to sensor noise, and quantify how this bias depends on the size
and noise level of the data. We present three modifications to DMD that can be used to remove this
bias: (i) a direct correction of the identified bias using known noise properties, (ii) combining the
results of performing DMD forwards and backwards in time, and (iii) a total least-squares-inspired
algorithm. We discuss the relative merits of each algorithm, and demonstrate the performance
of these modifications on a range of synthetic, numerical, and experimental datasets. We further
compare our modified DMD algorithms with other variants proposed in recent literature.

6.1 Introduction

With advances in both experimental techniques and equipment, and computational power and
storage capacity, researchers in fluid dynamics can now generate more high-fidelity data than ever
before. The presence of increasingly large data sets calls for appropriate data analysis techniques,
that are able to extract tractable and physically relevant information from the data. Dynamic mode
decomposition allows for the identification and analysis of dynamical features of time-evolving fluid
flows, using data obtained from either experiments or simulations. In contrast to other data-
driven modal decompositions such as the proper orthogonal decomposition (POD), DMD allows
for spatial modes to be identified that can be directly associated with characteristic frequencies and
growth/decay rates. Following its conception, DMD was quickly shown to be useful in extracting
dynamical features in both experimental and numerical data [125, 126]. It has subsequently been
used to gain dynamic insight on a wide range of problems arising in fluid mechanics [e.g., 128, 127,
70] and other fields [e.g., 59].

DMD has a strong connection to Koopman operator theory [81, 88], as exposed in [119], and
further reviewed in [89], which can justify its use in analyzing nonlinear dynamical systems. Since
its original formulation, numerous modifications and extensions have been made to DMD. [27]
highlights the connection that DMD shares with traditional Fourier analysis, as well as proposing
an optimized algorithm that recasts DMD as an optimal dimensionality reduction problem. This

69
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concept of finding only the dynamically important modes has also been considered in subsequent
works of [164] and [71]. All of these works are motivated, in part, by the fact that by default DMD
will output as many modes as there are pairs of snapshots (assuming that the length of the snapshot
vector is greater than the number of snapshots), which is arbitrary with respect to the dynamical
system under consideration. In reality, one would prefer to output only the modes and eigenvalues
that are present (or dominant) in the data. When the data is corrupted by noise (as will always be
the case to some degree, especially for experimental data), this process becomes nontrivial, since
noisy data might have a numerical rank far larger than the dimension of the governing dynamics of
the system. Further to this, one cannot expect to have a clean partition into modes that identify
true dynamical features, and those which consist largely of noise.

Simple ways of achieving this objective can involve either first projecting the data onto a smaller
dimensional basis (such as the most energetic POD modes) before applying DMD, or by choosing
only the most dynamically important DMD modes after applying DMD to the full data. One
can also truncate the data to a dimension larger than the assumed dimension of the dynamics,
and then apply a balanced truncation to the resulting dynamical system to obtain the desired
reduced order model. This approach is sometimes referred to as over-specification in the system
identification community [see, e.g., 75]. Keeping a higher dimension of data than that of the assumed
dynamics can be particularly important for input-output systems that have highly energetic modes
that are not strongly observable or controllable [112]. Ideally, any algorithm that restricts the
number of DMD modes that are computed should also additionally be computationally efficient.
A fast method to perform DMD in real time on large datasets was recently proposed in [62], while
a library for efficient parallel implementation of number of common modal decomposition and
system identification techniques is described in [16]. An extension of DMD that potentially allows
for better representation of nonlinear data has also recently been proposed [160], and although
the computational costs increase dramatically with the dimension of the system, a kernel method
described in [161] reduces the cost to be comparable to standard DMD.

One of the major advantages of DMD over techniques such as global stability analysis, for exam-
ple, is that it can be applied directly to data, without the need for the knowledge or construction of
the system matrix, which is typically not available for experiments [126]. For this reason, analysis
of the sensitivity of DMD to the type of noise typically found in experimental results is of particular
importance. The effects of noise on the accuracy of the DMD procedure was systematically inves-
tigated in the empirical study of [44], for the case of a synthetic waveform inspired by canonical
periodic shear flow instabilities. More recently, [101] have extended this type of analysis to more
complex data with multiple frequencies, as might be found in typical fluids systems. The present
work builds upon these previous studies by analytically deriving an expression that explicitly shows
how DMD should be affected by noise, for the case where the noise is assumed to be sensor noise
that is uncorrelated with the dynamics of the system. Our analysis complements the “noise-robust”
DMD formulation in [63] by explicitly quantifying the influence of noise on DMD. Further, while
our analysis is consistent with the total least-squares formulation in [63], we use the insights gained
from our analysis to develop alternative techniques to total least-squares DMD that may be prefer-
able in certain applications. Ultimately, the availability of multiple “noise-aware” DMD algorithms
allows the user to approach dynamical analysis of noisy data from multiple angles, thus garnering
more confidence in the computations. We note that the case of process noise, where noise can
interact with the dynamics of the system, is also the subject of recent work [8].

Our analysis uses a recent characterization of DMD [149], which highlights the connection of
DMD to related techniques that are used in other communities for the extraction of dynamical
information from data. Many linear system identification techniques are closely related in that
they are based around singular value decomposition of a data matrix; aside from DMD there is
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the eigensystem realization algorithm [72] and balanced proper orthogonal decomposition [112], for
example. Indeed, the origin of such an approach seems to date back to the work of [65].

In this work, we first show that the dominant effect of noise on DMD is often deterministic.
This not only allows us to accurately predict its effect, but also allows for a correction to be
implemented to recover the noise-free dynamics. As well as directly correcting for the noise, we
present two other modifications of DMD, that both are able to remove this bias without needing to
know the noise characteristics. Sect. 6.2 develops the theory that characterizes the effect of noise
on DMD, which subsequently motivates the formulation of our modified algorithms, which we term
noise-corrected DMD (ncDMD), forward-backward DMD (fbDMD) and total least-squares DMD
(tlsDMD). In Sect. 6.3, we analyze the performance of these algorithms on a number of synthetic
data sets, which are corrupted by Gaussian white noise. We additionally investigate how the
algorithms perform on data with both sensor and process noise. In Sect. 6.4, we use numerical and
experimental data from flow past a cylinder undergoing periodic vortex shedding, to demonstrate
the utility of the proposed modifications of DMD for real fluids data.

6.2 Characterizing noise in dynamic mode decomposition

This section details the methodology that is used to analyze the effect of noise in DMD. After
introducing DMD in Sect. 6.2.1, the effect of sensor noise in the data on the results of DMD is
studied in Sect. 6.2.2, which in particular shows that DMD is biased to sensor noise. Sects. 6.2.3–
6.2.5 formulate three different modifications of the DMD algorithm that are designed to remove
this bias.

6.2.1 Dynamic mode decomposition

DMD has undergone a number of formulations, interpretations and modifications since its inception.
Common to all methods is the requisite collection and arrangement of data, summarized now.
Suppose we collect snapshots of data xi, which we assemble as columns in the data matrix Z.
For fluids systems xi will typically be a velocity field snapshot, but more generally it is a vector
of observations of an evolving dynamical system at a given time. From Z, we select all pairs of
columns that are sampled at a time difference ∆t apart, and place them into the matrices X and Y
(where the data in a given column of Y was collected ∆t after the equivalent column of X). Note
that if Z consists of a sequential time-series of data, then X and Y are simply Z with the last and
first columns excluded, respectively. Let X and Y each be n by m matrices, so we have m pairs of
snapshots, each of size n. By not explicitly requiring a single time-series of data, we allow for larger
or irregular time gaps between snapshot pairs, the concatenation of data from multiple time-series,
and for the removal of any corrupted or spurious data. Recently, [149] proposed an interpretation
of DMD modes and eigenvalues as the eigendecomposition of the matrix

A = Y X+, (6.2.1)

where X+ denotes the Moore-Penrose pseudoinverse of a matrix X. While this is a succinct
interpretation, and one which will be useful in the ensuing analysis, it is typically not an efficient
(or even feasible) means of performing DMD (as discussed in [149]). This is especially true when
n � m, which is often the case in high-dimensional fluids systems. Instead, since X and Y have
rank at most min(m,n), it is typically more efficient to first project the data onto a subspace that
is (at most) of this dimension. One way to do this is by projecting the original snapshots onto
the POD modes of the data, which is implicitly done in all DMD algorithms. Note that the POD
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modes of X are the columns of U in the singular value decomposition X = UΣV ∗ (though typically
POD is performed after first subtracting the temporal mean of the data, which is not done here).
We present here a typical algorithm to compute DMD, that is most similar to that proposed in
[149] as exact DMD.

Algorithm 2 (DMD).

1. Take the reduced singular value decomposition (SVD) of X, letting X = UΣV ∗.

2. (Optional) Truncate the SVD by only considering the first r columns of U and V , and the
first r rows and columns of Σ (with the singular values ordered by size), to obtain Ur, Σr,
and Vr

3. Let Ã := U∗
r Y VrΣ

−1
r

4. Find the eigenvalues µi and eigenvectors wi of Ã, with Ãwi = µiwi,

5. Every nonzero µi is a DMD eigenvector, with a corresponding DMD mode given by ϕi :=
µ−1
i Y VrΣ

−1
r wi.

This method is similar to the original formulation in [126], but for the fact that in step 5
the DMD modes are no longer restricted to lie within the column space of X. We also explicitly
provide the optional step of truncating the SVD of X, which might be done if the system is known
to exhibit low dimensional dynamics, or in an attempt to eliminate POD modes that contain
only noise. We note that this is not the only means to reduce the dimension of the identified
system dynamics, nor is it necessarily optimal. Indeed, [164] develops a method that optimizes the
projection basis in parallel while performing a DMD-like eigendecomposition. [71] takes a different
approach, seeking a small number of nonzero modes from the full eigendecomposition that best
approximate the system dynamics. An empirical comparison between these various dimensionality-
reduction techniques will be given in Sect 6.3.3. Note that the continuous eigenvalues λci of the
system are related to the discrete time eigenvalues identified via DMD via λci = log(µi)/∆t. The
growth rate γi and frequency ωi associated with DMD mode ϕi are then given by λci = γi + iωi.

The matrix Ã is related to A in Eq. (6.2.1) by Ã = U∗
rAUr. While A can be viewed as an

approximating linear propagation matrix in Rn (i.e., the space of original data vectors), Ã is the
equivalent propagation matrix in the space of POD coefficients, which we will sometimes refer to
as POD space. Another interpretation of Ã is that it is the spatial correlation matrix between the
POD modes Ur, and the same POD modes shifted by the assumed dynamics A [126]. If we let
x̃k = U∗

r xk be the representation of a given snapshot x in the POD basis and let X̃ = U∗
rX and

Ỹ = U∗
r Y , then it is easy to verify that the equivalent of Eq. (6.2.1) in POD space is

Ã = Ỹ X̃+. (6.2.2)

Eq. (6.2.2) will be useful for the subsequent analysis performed in this paper.

6.2.2 Sensor noise in DMD

In this work we use the term sensor noise to describe additive noise that affects only our measure-
ments of a given system, and does not interact with the true dynamics. If we have a discrete-time
dynamical system

x(t+∆t) = F [x(t)],
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then we assume that our measurements take the form

xm(t) = x(t) + n(t),

where n(t) is a random noise vector. For the purposes of this paper, we will take each component of
n(t) to be independent and normally distributed with zero mean and a given variance. For instance,
zero mean. I don’t think we need to be pedantic about the probability theory here, but probably
good to be a little more specific than this. With X and Y as described in Sect. 6.2.1, suppose
that we measure Xm = X + NX and Ym = Y + NY , where NX and NY are random matrices of
sensor noise. Note that some (or most) columns of random data in NX might also be in NY , but
shifted to a different column. We will assume that the noise is independent of the true data, and
is independent in both space and time, so that each element of a given noise matrix is a random
variable taken from a fixed zero-mean normal distribution. From Eq. (6.2.2), the measured DMD
matrix Ãm can be computed from

Ãm = ỸmX̃+
m = (Ỹ + ÑY )(X̃ + ÑX)+

= (Ỹ + ÑY )(X̃ + ÑX)∗[(X̃ + ÑX)(X̃ + ÑX)∗]+

= (Ỹ X̃∗ + ÑY X̃
∗ + Ỹ Ñ∗

X + ÑY Ñ
∗
X)

[
X̃X̃∗ + ÑXX̃∗ + X̃Ñ∗

X + ÑXÑ∗
X

]+
, (6.2.3)

where we have used the identity M+ = M∗(MM∗)+. Note that here the ·̃ notation means that the
data is expressed in the POD basis obtained from the noisy data. We perform our analysis in this
POD space rather than with the original data to allow for truncation of low energy modes, and
because the computation of the pseudoinverse X+ can be prohibitive for large datasets. We expect
that the presence of noise should result in some error in the computation of Ãm (in comparison to
the noise free matrix Ã) and thus some amount of error in the computed DMD eigenvalues and
modes. Since elements of Ãm are statistical quantities dependent on the noise, it will make sense to
compute statistical properties of the matrix. We begin by computing E[Ãm], the expected value of
the computed DMD matrix. Provided that we have truncated any POD modes with zero energy,
X̃X̃∗ should be invertible. If the noise terms are sufficiently small, then we can make use of the
matrix perturbed inverse expansion (M + P )−1 = M−1 − M−1PM−1 + . . . , where higher order
terms will be small for M � P . Eq. 6.2.3 then becomes

Ãm = (Ỹ X̃∗ + ÑY X̃
∗ + Ỹ Ñ∗

X + ÑY Ñ
∗
X)(X̃X̃∗)−1

[
I − (ÑXX̃∗ + X̃Ñ∗

X + ÑXÑ∗
X)(X̃X̃∗)−1 + . . .

]
.

(6.2.4)

Taking the expected value of Eq. (6.2.4), we may classify the terms into three categories: a
deterministic terms that does not involve ÑX or ÑY (which ends up being Ã), terms involving one
or three noise matrices, which will have expected values of 0 (e.g., ÑY X̃

∗(X̃X̃∗)−1), and terms which
involve two or four noise matrices. It is terms this latter category that may have non-zero expected
values, and thus bias the result of applying DMD to noisy data. Discarding terms containing a
single noise matrix, and additionally discarding higher order terms from the expansion, we have

E(Ãm) = Ã(I − E(ÑXÑ∗
X)(X̃X̃∗)−1) + E(ÑY X̃

+ÑX)X̃+ + E(ÑY X̃
+X̃Ñ∗

X)(X̃X̃∗)−1

+ Ỹ E(Ñ∗
X(X̃X̃∗)−1ÑX)X̃+ + Ỹ E(Ñ∗

X(X̃X̃∗)−1X̃Ñ∗
X(X̃X̃∗)−1)

+ E
[
ÑY Ñ

∗
X(X̃X̃∗)−1(I − ÑXÑ∗

X(X̃X̃∗)−1)
]
, (6.2.5)

where we have noted that Ỹ X̃∗(X̃X̃∗)−1 = Ỹ X̃+ = Ã. Assuming that the noise is sufficiently
small compared with the true data, we can further neglect the term involving four noise matrices.
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True Value
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Figure 6.1: Illustrative diagram showing how the error in estimation of a given quantity can be
decomposed into bias error (being the difference between the true and expected value of the iden-
tified quantity), and random error (representing the fluctuation in the estimated quantity between
different noise realizations)

The largest of the remaining terms will be that which contains the product ÑXÑ∗
X . The remaining

terms do not necessarily have zero mean, but for the purposes of this investigation will be neglected.
Our results will demonstrate that this simplification is justifiable. This reduces Eq. (6.2.5) to the
following expression, relating the identified and true DMD matrices:

E(Ãm) = Ã(I − E(ÑXÑ∗
X)(X̃X̃∗)−1). (6.2.6)

It might seem surprising that Eq. (6.2.6) contains NX , but not NY . The reason for this will
become apparent in Sect. 6.2.5, where casting DMD in an optimization framework shows that the
standard algorithm is optimal only when assuming that all of the noise is in Y , but not X. From
a mathematical point of view, it is because the expression Ã = Ỹ X̃+ is linear in Ỹ but not in X̃,
which is why perturbations to X̃ do not have to propagate through the equation in an unbiased
manner. Note that the same analysis can be performed without transforming into POD space (i.e.,
without the ·̃ notation), with the analogous expression to Eq. (6.2.6) being

E(Am) = A(I − E(NXN∗
X)(XX∗)−1), (6.2.7)

subject to XX∗ being invertible. For systems where the size of each snapshot is larger than the
number of snapshots (i.e, n > m, which is typical for fluids systems), XX∗ will not be invertible,
thus motivating our choice to work in POD space. Moreover, one might want the option to truncate
all but a certain number of PODmodes, in order to obtain a low-dimensional model for the dominant
system dynamics. Up until this point, we have not made a distinction between the POD modes of
the clean data, X, and the noisy measured data, Xm, with the latter typically being all that we
have access to. This issue will be explicitly addressed in Sect. 6.2.3.

Eq. (6.2.6) shows that DMD is biased to sensor noise. In practice, the importance of this
finding will depend on how the magnitude of this bias compares to the random component of
error, that will fluctuate with different samples of random noise. Figure 6.1 shows an illustration
of how bias and random components of error contribute to the total error in the estimation of
some quantity from noisy data. Appendix 1 provides scaling arguments that suggest that the bias
will be the dominant component of error in DMD whenever m1/2SNR > n1/2, where SNR is the
signal-to-noise ratio. When this is the case, it would be particularly advantageous if one had access
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to a bias-free alternative to DMD. The remainder of this section will present a number of such
alternatives.

6.2.3 Direct correction of sensor noise bias in DMD

Referring back to Eq. (6.2.6), we can form a bias-free estimate of the true DMD matrix Ã via

Ã ≈ Ãm(I − E(ÑXÑ∗
X)(X̃X̃∗)−1)−1. (6.2.8)

Making this modification in practice requires an accurate estimate of both the noise covariance,
E(ÑXÑ∗

X), and the true data covariance, X̃X̃∗, in POD space. For noise that is sufficiently small,
we can utilize the approximation

X̃X̃∗ = U∗XX∗U ≈ U∗
mXmX∗

mUm = Σ2
m, (6.2.9)

where UmΣmV ∗
m is the singular value decomposition of the noisy data, Xm. This allows for us

to express the bias of DMD in terms of quantities that are measurable from noisy data. The
assumption that XX∗ = (Xm −NX)(Xm −NX)∗ ≈ XmX∗

m can be further refined by retaining the
NXN∗

X term, but for small noise this higher order term will typically be small enough to neglect
after being inserted into Eq. (6.2.8). The assumption that U ≈ Um will largely be justified by
means of results that show the utility of this analysis. Analyzing the precise relationship between
U and Um in more detail is beyond the scope of this work, and is indeed an active area of research.
We direct the interested reader to relevant results in perturbed SVD’s [137, 138, 9], random inner
product matrices [28, 141], and POD-type operations on noisy data [48, 133, 169].

Assuming that the noise is uniform as well as spatially and temporally independent, then
E(ÑXÑ∗

X) = E(U∗NXN∗
XU) = U∗mσ2

NU = mσ2
NI, where σ2

N is the variance of each independent
component of the noise matrix. With this assumption, and the approximation given in Eq. (6.2.9),
Eq. (6.2.8) becomes

Ã ≈ Ãm(I −mσ2
NΣ−2

m )−1. (6.2.10)

If the noise is sufficiently small, then a perturbed inverse approximation gives

Ã ≈ Ãm(I +mσ2
NΣ−2

m ). (6.2.11)

We thus have derived a correction to the bias that is present in the original DMD matrix Am due
to the effect of sensor noise. We note that this approximation relies on an accurate knowledge of
the noise covariance matrix. There are numerous means to estimate noise properties from data, see
[108], for example. The approximations used in deriving this expression also rely on the magnitude
of the noise being smaller than that of the true data within each non-truncated POD mode. We
now state explicitly the algorithm by which we can correct for the effect of sensor noise in the DMD
algorithm, which we refer to as noise-corrected DMD, or ncDMD:

Algorithm 3 (Noise-corrected DMD (ncDMD)).

1. Compute Ãm from the measured data as per steps 1–3 of Algorithm 2

2. Compute the approximation of Ã from Eq. (6.2.10)

3. Compute the DMD eigenvalues and modes via steps 4–5 of Algorithm 2, using the bias-free
estimate of Ã.
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As was also noted in Sect 6.2.2, we could have performed all of the above analysis without
first projecting onto the space of POD coefficients, which gives us the following as analogous to
Eqs. (6.2.10) and (6.2.11) respectively, subject to the appropriate inverses existing:

A ≈ Am(I −mσ2
N (XmX∗

m)−1)−1 ≈ Am(I +mσ2
N (XmX∗

m)−1). (6.2.12)

While this approach might be computationally prohibitive for many applications of DMD (since it
requires inverting large n × n matrices), it could in theory be more accurate, since it doesn’t rely
on any assumption that the POD modes for the measured and true data are sufficiently close to
each other. Note again that XX∗ can only be invertible if m > n, as otherwise it cannot be full
rank.

6.2.4 Forward-backward DMD

If we were to swap the data in X and Y , then (for suitably well behaved data) we should expect to
identify the inverse dynamical system, with state propagation matrix Bm (or B̃m in POD space),
which approximates the true dynamics B (and B̃). Note that it is not guaranteed that the dynamics
of the original system are invertible, but this assumption should not be too restrictive for the
majority of physical systems under consideration (particularly after projection onto an appropriate
POD subspace). It is argued in Appendix 1 that sensor noise has the effect of shifting the computed
DMD eigenvalues to appear to be more stable than they actually are (i.e., moving them further
inside the unit circle). Since our analysis was independent of the nature of the data, we should
expect the same effect to be present for the computation of the inverse system. However, if B̃ is
invertible, then we should have B̃ = Ã−1, meaning that we should be able to compute an estimate of
the forward-time propagation matrix using backward-time DMD, via Ãback

m = B̃−1
m . However, given

that the eigenvalues of B̃m should have their growth rates underestimated, those of the eigenvalues
of Ãback

m will be overestimated. Specifically, from consideration of Eq. (6.2.6), we have

E(B̃m) ≈ B̃
(
I − E(ÑXÑ∗

X)(X̃X̃∗)−1
)
,

and so

Ãback
m ≈

(
I − E(ÑXÑ∗

X)(X̃X̃∗)−1
)−1

Ã, (6.2.13)

where we are using the fact that the noise and POD energy components are the same for forward-
and backward-DMD. We can then combine estimates of the dynamics from forward- and backward-
time DMD to obtain

ÃmÃback
m = Ã

(
I − E(ÑXÑ∗

X)(X̃X̃∗)−1
)(

I − E(ÑXÑ∗
X)(X̃X̃∗)−1

)−1
Ã = Ã2. (6.2.14)

We thus have the estimate
Ã ≈ (ÃmÃback

m )1/2. (6.2.15)

Note that this square root will in general be non-unique, and thus determining which root is the
relevant solution could be nontrivial. One reasonable method, if there is any ambiguity, is to
take the square root which is closest to Ãm (or Ãback

m ). See [53] for a more detailed discussion
of the computation of matrix square roots. As an aside, note that if we assume that we know
the equivalent continuous time matrices Ãc

m = log(Ãm)/∆t and Ãc,back
m = log(Ãback

m )/∆t, then the
equivalent of Eq. (6.2.15) is

Ãc ≈ 1

2
(Ãc

m + Ãc,back
m ).

We are now in a position to formalize this algorithm, which we refer to as forward-backward DMD
or fbDMD.
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Algorithm 4 (forward-backward DMD (fbDMD)).

1. Compute Ãm from the measured data as per steps 1–3 of Algorithm 2

2. Compute B̃m from the measured data as per steps 1–3 of Algorithm 2, where X and Y are
interchanged

3. Compute the approximation of Ã from Eq. (6.2.15)

4. Compute the DMD eigenvalues and modes via steps 4–5 of Algorithm 2, using the improved
estimate of Ã from step 4.

Note that in the case where most data snapshots are in both X and Y (e.g., for a sequential
time series of data) we can reduce the computational cost of steps 1–2 in Algorithm 4 by first taking
the SVD of the entire data set, and then working in the space of the resulting POD modes.

6.2.5 Total least-squares DMD

For the case where the number of snapshots, m, is greater than the size of each snapshot, n,
the DMD matrix A can be interpreted as the least-squares solution to the overdetermined system
AX = Y . When n > m, then the solution for the now underdetermined system is the minimum
Frobenius norm solution to AX = Y . In both cases, this solution is A = Y X+. Note that it is
possible to turn an under-determined system into an over-determined system by truncating the
number of POD modes used to less than m (truncating to precisely m results in a unique solution
when the data is full column rank, with no loss of data). A least-squares solution of this form
minimizes the error in Y , but implicitly assumes that there is no error in X. This can explain why
the bias in DMD (Eq. (6.2.6)) is dependent on ÑX , but not ÑY . That is, in the least-squares case
DMD can be viewed as finding

A : Y + EY = AX, minimizing ‖EY ‖F ,

where ‖ · ‖F denotes the Frobenius norm of a matrix. When doing backwards-time DMD in
Sect. 6.2.4, we conversely assume that Y is known exactly and minimize the error in X. That
is, assuming the identified dynamics are invertible, we find

A : Y = A(X + EX), minimizing ‖EX‖F .

For this reason, combining forward- and backward-time DMD takes into account the error in both
X and Y . A more direct means of doing this is to use a single algorithm that finds a least-squares
solution for the error in both X and Y . It is possible to adapt standard TLS algorithms [53] to a
DMD setting, which we perform here. We seek

A : (Y + EY ) = A(X + EX), minimizing ‖E‖F , where E =

[
EX

EY

]
.

The expressions Y +EY and X +EX can be interpreted as Ym −NY and Xm −NX . To solve for
this, we can rearrange the equation to obtain

[
A −I

] [X + EX

Y + EY

]
= 0. (6.2.16)
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We would now like to assume that 2n < m. This might not be the case, particularly for high-
dimensional fluids data. To get around this, and improve computational tractability, we may
project Eq. (6.2.16) onto a POD subspace of dimension r < m/2, to obtain

[
Ã −I

] [X̃ + ẼX

Ỹ + ẼY

]
= 0. (6.2.17)

This POD projection step is in contrast to the TLS DMD formulation in [63], where a projection

is performed onto a basis determined from an augmented snapshot matrix Z =

[
X
Y

]
. We find that

the present formulation yields more accurate eigenvalues in a number of examples. Note that the

nullspace of
[
Ã −I

]
is r-dimensional, meaning that the 2r by m matrix

[
X̃ + ẼX

Ỹ + ẼY

]
can have rank

at most r.

Let the full SVD of

[
X̃

Ỹ

]
be given by UΣV ∗. If the data is noisy, we should expect that all 2r

diagonal entries of Σ are nonzero. By the Eckart-Young theorem [46], the nearest (in the sense of
Frobenius norm) rank r matrix will be given by

[
X̃ + ẼX

Ỹ + ẼY

]
= UΣ1:rV

∗,

where Σ1:r contains the leading r singular values of Σ, with the rest replaced by zeros. We then
have that [

X̃ + ẼX

Ỹ + ẼY

]
= UΣ1:rV

∗ =

[
U11 U12

U21 U22

] [
Σ1 0
0 0

] [
V ∗
1

V ∗
2

]
=

[
U11Σ1V

∗
1

U21Σ1V
∗
1

]
,

where Uij are r by r matrices, and V1 is the first r columns of V . Rearranging this equation, we
obtain the total least-squares estimate for Ã:

Ã = U21U
−1
11 . (6.2.18)

Note that this derivation requires that U11 be invertible. While the derivation includes the full SVD
of the augmented data, Eq. (6.2.18) indicates that we only need the first r columns of U , meaning
that only a reduced SVD is required. Algorithm 5 summarizes this total least-squares approach to
DMD, which we refer to as total least-squares DMD, or tlsDMD.

Algorithm 5 (total least-squares DMD (tlsDMD)).

1. Collect data X and Y , and project onto r < m/2 POD modes to obtain X̃ and Ỹ .

2. Take the SVD of

[
X̃

Ỹ

]
, letting

[
X̃

Ỹ

]
= UΣV ∗.

3. Partition the 2r by 2r matrix U into r by r sub-matrices, letting U =

[
U11 U12

U21 U22

]
(note that

only the first r columns need to be computed).

4. Compute the total least-squares DMD matrix Ã, using Eq. (6.2.18).

5. Compute the DMD eigenvalues and modes using steps 4–5 of Algorithm 2.

An alternative and more focused exposition of tlsDMD is given in [63]. We note that Algorithm 5
is not identical to that presented in this work (due to the lack of pre-truncation of POD modes),
however we find that Algorithm 5 gives marginally better results in terms of the accuracy of
identified eigenvalues.
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Figure 6.2: (a) Eigenvalues (in continuous-time) identified from regular DMD (Algorithm 2, dots)
and noise-corrected DMD (Algorithm 3, crosses) from 100 snapshots of data from Eq. (6.3.1), with
∆t = 0.1 and σ2

N = 0.01. Only one of the complex conjugate pair of eigenvalues is shown. The
mean and 95% confidence ellipse of 1000 trials are given for each data set. (b) shows the mean and
95% confidence ellipse for the same data set for Algorithms 2–5

6.3 Results with synthetic data

In this section we will test our proposed modifications to DMD on a number of examples. Using
known dynamics with the addition of random noise will allow us to examine the performance
of these proposed modifications (Algorithms 3–5) in comparison to regular DMD (Algorithm 2).
We begin by considering a simple 2-dimensional linear system in Sect. 6.3.1. In Sect. 6.3.2, we
consider the same system with an expanded set of observables, which tests the important case of
high-dimensional data that is described by low-dimensional dynamics. Sect. 6.3.3 compares the
performance of the proposed modifications of DMD to other DMD variants in recent literature,
while Sect. 6.3.4 considers the problem of identifying dynamics that are quickly decaying and
obscured by dominant modes and noise, a case where DMD-like algorithms could be of most use.
Finally, in Sect. 6.3.5 we analyze how the proposed DMD modifications treat process noise.

6.3.1 Example: A periodic linear system

We consider first a simple two-dimensional linear system, with dynamics given by

ẋ =

[
1 −2
1 −1

]
x. (6.3.1)

This system has (continuous-time) eigenvalues λc1,2 = ±i, so gives purely periodic dynamics,
with no growth or decay. We discretize with a timestep ∆t = 0.1, so the discrete-time eigenvalues
are then λ1,2 = e±∆ti. We use 100 timesteps of data (i.e., m = 99), corrupted with Gaussian
white noise of variance σ2

N = 0.01. The identified continuous-time eigenvalues from both regular
DMD (Algorithm 2), and the direct noise-correction (Algorithm 3) are shown in Fig. 6.2(a), for
1000 different trials from the initial condition x0 = [1 0.1]T . We assume that the correction
term is given by mσ2

NIn, and observe that this corrects almost perfectly for the bias in the DMD
algorithm in terms of identifying eigenvalues. Also shown in Fig. 6.2(a) are ellipses representing
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Figure 6.3: Error in the estimated propagation matrix Ã arising from performing DMD and ncDMD
on noise-corrupted data generated from Eq. (6.3.1), for different values of m and σ2

N . In (a) the
error is given as ‖Atrue−Apred‖F , while in (b) this quantity is normalized by the standard deviation
of the noise, σN . In both cases, the error is averaged over 100 trials for each m and σ2

N . Note that
for clarity, (b) excludes the two largest noise levels shown in (a)

the 95% confidence region, with the major and minor axes of the ellipse aligned with the principal
component directions of the eigenvalue data. For clarity, in the presentation of subsequent results,
we will omit individual data points and show only such ellipses. In Fig. 6.2(b) we show the mean
and 95% confidence ellipses for Algorithms 4 and 5. As with ncDMD, both fbDMD (Algorithm 4)
and tlsDMD (Algorithm 5) accurately correct for the bias in the mean of the identified eigenvalue.
Further to this, fbDMD and tlsDMD also both reduce the area of the 95% confidence ellipse, which
indicates that they are more likely to attain a closer approximation to the correct eigenvalue on
any given trial.

Focusing back on comparing Algorithms 2 and 3, we show results for a variety of values of m
and σ2

N in Fig. 6.3. In Fig. 6.3(a), rather than looking at the error in the eigenvalues, we instead
consider the Frobenius norm of the difference between the true and identified propagation matrices,
‖Atrue−Apred‖F . For very small noise, the correction makes little difference, since the random error
is larger than the bias error. For larger values of noise, we observe that the error saturates when
using standard DMD, which is due to the presence of the bias term identified in Sect. 6.2.2, which
has a size independent of the number of samples, m. We note that the magnitude of this bias term
is proportional to σ2

N , as predicted by Eq. (6.2.10). Evidence of this error saturation phenomena
can also be seen in past studies of the effect of sensor noise on DMD [44, 164, 101]. After this bias
term is corrected for, we see that the error decays proportional to m−1/2 for all values of noise,
as predicted from the analysis in Appendix 1. The more rapid decay in error with m for small
numbers of samples seems to arise from the fact that the data has not yet completed one full period
of oscillation. Fig. 6.3 shows the corrections to DMD made using both the sampled (NXN∗

X) and
theoretical (mσ2

NI) covariance matrices. Normally the sample noise covariance would not be known,
and so we demonstrate here that the theoretical covariance achieves almost the same decrease in
error. Fig. 6.3(b) shows that the ncDMD error curves collapse when the error is normalized by the
standard deviation of noise, σN (note that we could also multiply the error by the SNR to get the
same scaling).

Fig. 6.4 shows the performance of Algorithms 4 and 5 on the same data as Fig. 6.3. Again, we
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Figure 6.4: Error in the estimated propagation matrix Ã arising from performing DMD, ncDMD,
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N

find that both of these algorithms can prevent the error saturation present in standard DMD, and
indeed can perform noticeably better than Algorithm 3 for larger noise levels. Algorithms 3–5 all
appear to exhibit the same asymptotic behavior as the number of snapshots, m, increases, with the
error decreasing proportional to m−1/2.

A common means to mitigate the effect of noisy data is to collect multiple time-series of data,
and process this in such as way to improve the results over just using one data set. One can ask
the question if it is better to concatenate the snapshots of data from each time series and apply
DMD to this collection, or to apply DMD to phase-averaged data. Our results suggest that the
latter option is preferable if using standard DMD, since adding additional pairs of snapshots will
not decrease the error beyond a certain level, due to this bias saturation at large m. If we are
using ncDMD, fbDMD, or tlsDMD, however, then we should get the same scalings regardless of
which option is chosen, since in both cases the error should be proportional to p−1/2, where p is
the number of trials of data collected.

6.3.2 A periodic linear system with a high-dimensional state of observables

This example considered in Sect. 6.3.1 has m � n, which is atypical of many fluids systems for
which DMD is used. To consider the case where the size of the state n is larger than the number
of snapshots m, we expand the state of our system to include time-shifts of the data. In this sense,
we have new observables given by

zk =




xk

xk−1
...

xk−q


 , (6.3.2)

with the size of the state n = 2(q + 1). This periodic system can equivalently be viewed as a
traveling wave, which is now observed over a larger spatial domain. Similar data (but with a non-
zero growth rate) was considered in [44] and [164]. Since the dynamics are still only two-dimensional
despite the higher dimensional state, we use only the first two POD modes of the data to identify
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Figure 6.5: Mean and 95% confidence ellipses of continuous-time eigenvalues identified by applying
regular DMD (Algorithm 2), noise-corrected DMD (Algorithm 3), forward-backward DMD (Al-
gorithm 4) and total least-squares DMD (Algorithm 5) on 1000 trials of noisy data generated by
Eq. (6.3.1), and observed as in Eq. (6.3.2). Here the number of snapshots m is fixed to be 50,
∆t = 0.1, and σ2

N = 0.1. Only one of the complex conjugate pair of eigenvalues is shown

a 2× 2 propagation matrix Ã. The next section will examine alternative means of performing this
dimensionality reduction.

Fig. 6.5 shows the statistical results (in terms of DMD eigenvalues) of performing variants of
DMD on such data, using m = 50 and a range of snapshot sizes, n. We find that a bias exists for
regular DMD, but the magnitude of this bias decreases as the size of each snapshot increases (note
that the scale between subplots changes, though the aspect ratio remains the same). We find that
Algorithms 3–5 all outperform regular DMD in terms of giving mean (expected) eigenvalues that are
closer to the true value. For small state sizes, Algorithms 4 and 5 also also give a smaller confidence
ellipse, though this is not observed for larger state sizes. As the size of the state increases, the bias
component of the error of DMD (evidenced by the difference between the true and mean identified
eigenvalue) becomes smaller relative to the random component of the error (indicated by the size
of the confidence ellipse). This means that the modifications to DMD presented in Algorithms 3–5
give the largest improvement when the size of the state is small, due to the fact that in this regime
the bias component of error is larger than the random component. Note that these conclusions
may be predicted from the scaling laws given in Eqs. (6.5.2) and (6.5.5). Moreover, one can verify
that as the size of the state (n) increases, the size of the ellipses decrease proportional to n−1/2.

6.3.3 Comparison to other modified DMD algorithms

Without any modification, applying DMD on noisy data will give min(m,n) eigenvalue-mode pairs,
many of which may be mostly or entirely due to noise, particularly if the underlying dynamics are
low-dimensional. For this reason, a number of modifications of DMD that aim to identify a small
number of dynamically important modes have been developed. The most simple means of reducing
the dimension of the data is to simply project onto a reduced number of POD modes, which is
explicitly mentioned as an optional step in Algorithm 2. This projection step was also used within
Algorithms 3–5 in Sect. 6.3.2. A number of alternative means to obtain a small number of dynamic
modes from DMD-type algorithms have been proposed, as briefly mentioned in Sect. 6.1. These
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variants all start with the observation that standard DMD can be formulated within an optimization
framework, in the sense that it identifies a least-squares or minimum-norm propagation matrix for a
given data set. [27] proposes a modification termed optimized DMD that seeks to find optimal low-
rank dynamics that best matches a sequential time-series of data. While the fact that this method
optimizes over the entire time-sequence of data rather than just pairwise snapshots should increase
its robustness to noise, the non-convexity of the optimization potentially limits its utility. Optimal
Mode Decompostion (OMD, [56, 164]) finds an optimal low-dimensional subspace on which the
identified dynamics reside, rather than assuming that this subspace is simply the most energetic
POD modes. This approach was shown to give an improvement on the DMD eigenvalues obtained
for noisy data in [164]. Sparsity-promoting DMD (spDMD, [71]) adds an l1 regularization term
that penalizes the number of DMD modes with non-zero coefficients in the approximation of the
time-series of data.

This section will compare OMD and spDMD with the algorithms presented in the present
work. Of the algorithms presented here, we will focus on fbDMD (Algorithm 4), which was found
to perform equally well as tlsDMD, and better than ncDMD, in Sects. 6.3.1 and 6.3.2. Fig. 6.6 shows
identified eigenvalue statistics (mean and confidence ellipses) for each of these algorithms, using the
same data as that for Fig. 6.5. We observe that OMD gives a more accurate mean eigenvalue that
DMD, and a confidence ellipse of approximately the same size. spDMD gives a mean identified
eigenvalue that is closer again to the mean, although the variance in the eigenvalues identified for
each trial is larger. We note that spDMD occasionally produced erroneous results, which were
excluded as outliers from the statistical analysis. This highlights an important advantage to the
modifications to DMD presented here - the algorithms are given in closed form, and do not rely on an
appropriate selection of parameters and tolerances that are most likely required for an optimization
procedure. In all of the cases, fbDMD (and tlsDMD, which is not shown but barely distinguishable
from fbDMD) gives the best estimate of the true eigenvalue.

While these results suggest that fbDMD/tlsDMD is more accurate than OMD and spDMD, we
must remember that the results from one data set do not show the global superiority of any given
algorithm. Indeed, one could most likely find data sets for which any given algorithm is superior
(by some chosen metric) to others. We conclude this section by noting that it should be possible
to combine the optimization procedures presented in [27], [164], and [71]) with the modifications
to DMD presented here. Indeed, a simple means to do this might be to modify Algorithm 4 so
that the results of applying a given algorithm forwards and backwards in time are geometrically
averaged, as in Eq. (6.2.15).

6.3.4 Identifying hidden dynamics

The systems considered in Sects. 6.3.1 and 6.3.2 could be considered “easy” in the sense that the
dominant dynamics are simple, and of consistently larger magnitude than the noise. Indeed, it is not
difficult to qualitatively identify such dynamics by eye from simply looking at some visualization of
the data. A more difficult case occurs when some of the dynamics are of low magnitude and/or are
quickly decaying, and thus might quickly be lost among the noise in the measurements. A major
benefit of data processing techniques such as DMD is the ability to identify dynamics that might
otherwise remain hidden. With this in mind, we now consider a superposition of two sinusoidal
signals that are traveling across a spatial domain in time, with the amplitude of one mode growing,
and the other decaying:

f(x, t) = sin(k1x− ω1t)e
γ1t + sin(k2x− ω2t)e

γ2t + nσ(x, t), (6.3.3)
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Figure 6.6: Mean and 95% confidence ellipses of continuous-time eigenvalues identified by applying
regular DMD (Algorithm 2), forward-backward DMD (Algorithm 5), OMD and spDMD for noisy
data generated from 1000 trials of data generated by Eq. (6.3.1), and observed as in Eq. (6.3.2).
Here the number of snapshots m is fixed to be 50, ∆t = 0.1, and σ2

N = 0.1. Only one of the complex
conjugate pair of eigenvalues is shown

where we set k1 = 1, ω1 = 1, γ1 = 1, k2 = 0.4, ω2 = 3.7 and γ2 = −0.2. We thus have the
superposition of a growing, traveling wave, and a decaying signal that is quickly hidden by the
unstable dynamics. The four continuous-time eigenvalues of this data are γ1 ± ω1 and γ2 ± ω2.
This data is again similar to that considered in [164] and [44], if we neglect the decaying dynamics.
Fig. 6.7 shows the data with white noise of standard deviation σ = 0.5. Fig. 6.8 shows the
performance of various DMD-type algorithms in identifying one of the dominant eigenvalues (1+ i)
and one of the “hidden” eigenvalues (−0.2+3.7i). Mean eigenvalues and error ellipses are computed
from 1000 different noise samples. Unsurprisingly, all methods are quite accurate at identifying the
dominant eigenvalue, though the variants proposed in the present work show improvements in both
the mean and scatter over the 1000 trials. In terms of the hidden eigenvalue, we observe that DMD
(as well as OMD) estimates a decay rate that is almost double the true value. In contrast, all of
ncDMD, fbDMD, and tlsDMD predict the eigenvalue accurately, with a reduction in the error of
the mean eigenvalue between DMD and fbDMD (for example) of 88%. In addition, we note that
the scatter in the identified hidden eigenvalue across the trials is smaller for fbDMD and tlsDMD
(as indicated by smaller confidence ellipses).

6.3.5 Differentiating between process and sensor noise

This section will primarily address the issue of comparing and distinguishing between the effects
of process and sensor noise. We consider the Stuart-Landau equation, which has been used as a
model for the transient and periodic dynamics of flow past a cylinder in the vortex shedding regime
[95, 7]. In discrete time, we can express this system in polar coordinates by

rk+1 = rk + dt(µrk − r3k + nr),

θk+1 = θk + dt(γ − βr2k +
nθ

rk
),

(6.3.4)
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Figure 6.7: Visualization of data generated by Eq. (6.3.3), with k1 = 1, ω1 = 1, γ1 =1, k2 =
0.4, ω2 = 3.7, γ2 = −0.2, and σ = 0.5
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Figure 6.9: Eigenvalues identified using (a) DMD, (b) ncDMD, and (c) tlsDMD for the Stuart-
Landau equation (Eq. (6.3.4)), with 100, 000 snapshots of data from Eq. (6.3.5), with r0 = 1,
µ = 1, γ = 1, β = 0, and dt = 0.01. Data with sensor noise, process noise, neither and both
are considered, with noise levels for process and sensor noise being σ2

P = 0.01 and σ2
N = 10−4

respectively. Note that in the absence of sensor noise, DMD and ncDMD are identical

where we have included process noise terms nr and nθ, which are assumed to be independent in
time, and sampled from separate zero-mean Gaussian distributions with variance σ2

P . We take as
our data snapshots of the form

xk =
[
e−Jiθk e(−J+1)iθk · · · eJiθk

]T
, (6.3.5)

for some integer J . We may add sensor noise to this data as in previous sections. For µ > 0,
Eq. (6.3.4) contains a stable limit cycle at r =

√
µ, with period 2π/(γ − βµ). Starting on the limit

cycle, we consider data with process noise, sensor noise, neither, and both. Without any noise,
the eigenvalues identified from this data will lie upon the imaginary axis, at locations given by
λc = ij(γ − µβ). Process noise acts to perturb the system from its limit cycle, which ultimately
leads to phase diffusion, and a “bending” of the eigenvalues such that they instead lie on a parabola.
The behavior of this system with process noise is described more extensively in [8]. Fig. 6.9 shows
the results of applying variants of DMD on data generated by Eq. (6.3.4) with µ = 1, γ = 1, β = 0,
and dt = 0.01, with data collected using Eq. (6.3.5) with J = 10. Applying DMD on noise-free data
gives eigenvalues along the imaginary axis, while data from the system with process noise gives a
parabola of eigenvalues, as expected. For data collected using Eq. (6.3.5), each data channel will
be orthogonal in time, and will contain the same energy. As a result, sensor noise will act to shift
all identified eigenvalues into the left half plane by the same amount, as observed in Fig. 6.9(a).
Fig. 6.9(b) shows that applying ncDMD accurately corrects for this shift, for the system with and
without process noise. This shows that it is possible to distinguish between the effects of these two
forms of noise, given only an estimate of the magnitude of the sensor noise. That is, we are able to
eliminate the effects of the noise that is due to imperfections in our observations, while retaining
the effects of actual disturbances to the system. Fig. 6.9(c) shows that tlsDMD corrects for the
effects of both process and sensor noise, which is desirable if one wishes to recover the dynamics
of the noise-free system. The results for fbDMD are not shown, but were very similar to those for
tlsDMD. The ability of tlsDMD and fbDMD on process noise is not surprising, since they treat X
and Y in a symmetric manner, and thus consider phase diffusion both forwards and backwards in
time.
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6.4 Results with numerical and experimental data

Having analyzed the performance of the various proposed modifications of DMD on synthetic data
sets, we now turn our attention to data obtained from fluids simulations and experiments. We
will focus on the canonical case of the unsteady wake of a circular cylinder exhibiting periodic
vortex shedding. In Sect. 6.4.1 we present results from data obtained from a two-dimensional
direct numerical simulation, while Sect. 6.4.2 considers data obtained from PIV measurements in
a water channel.

6.4.1 Cylinder wake: simulation data

We use an immersed boundary projection method [139, 34], with a domain consisting of a series
of nested grids, with the finest grid enclosing the body, and each successive grid twice as large as
the previous. The finest grid consists of uniformly spaced points with grid spacing equal to 0.02D
(where D is the cylinder diameter), extending 2D upstream and 4D downstream of the center of
the cylinder, and spanning 4D in the direction normal to the flow. Each successively larger grid
contains the same number of grid points, with twice the grid spacing as the previous grid. The
coarsest grid spans 24D in the streamwise direction and 16D in the normal direction. Uniform
boundary conditions are used to first solve the Navier-Stokes equations on the largest grid, with
each smaller grid using the next larger grid for boundary conditions. The numerical scheme uses
a 3rd order Runge-Kutta time stepper, with a time step of 0.01D/U∞, where U∞ and D are the
freestream velocity and cylinder diameter, respectively. The Reynolds number Re = U∞D

ν was set
to be 100, where ν is the kinematic velocity. This Reynolds number is above that for which the wake
is stable (47, [107]), and below that for which 3-dimensional instabilities emerge (approximately
194, [163]). At this Reynolds Number, the wake is hence unstable, and approaches a single periodic
limit cycle characterized by a von-Kàrmàn vortex street in the wake. The data to be analyzed was
taken from 234 snapshots of the vorticity field, spaced 0.1D/U time units apart. This corresponds
to approximately 4 complete periods of vortex shedding. We truncate the data to only consider
first 15 POD modes. These first 15 POD modes contain 99.99% of the total energy of the clean
data, and 92.96% of the total energy of the data after the addition of Gaussian white noise with
standard deviation σ = 0.2U/D. Thus it is almost entirely noise that is truncated for the noisy
data.

Fig. 6.10 shows results from applying various variants of DMD to such data. Though not
shown, the results of applying tlsDMD were visually indistinguishable as using fbDMD. Since we
are artificially adding noise, we can compare the results using noisy data to those generated from
the noise-free data. When applying regular DMD to noisy data, we observe significant errors in
the growth rate associated with the highest-frequency eigenvalues (Fig. 6.10(a)). For an oscillatory
system such as this, the DMD eigenmodes are very similar to the POD modes, with a DMD mode
corresponding to λc ≈ 0 that is almost the mean flow, and the modes associated with conjugate
pairs of DMD eigenvalues corresponding to pairs of POD modes with equal energy, see [27] for
further discussion of this phenomenon. This means that the observed measured eigenvalues are
in line with the analysis given in Sect. 6.2.2 and Appendix 1, since the lower energy POD modes
oscillate the most. We can see the effect of this error in Fig. 6.10(b), which shows the prediction
of a number of POD coefficients as evolved by the identified system, starting from the true initial
condition. The dominant, low frequency POD modes are accurately predicted, but the higher
“harmonics” are erroneously predicted to decay when using regular DMD. ncDMD improves the
performance marginally, while fbDMD and tlsDMD both almost completely remove the erroneous
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Figure 6.10: (a) Eigenvalues and (b) POD coefficients identified from applying DMD, ncDMD
fbDMD, and tlsDMD to DNS vorticity data from a cylinder wake at Re = 100. Noisy data was
corrupted with Gaussian white noise with σ = 0.2U/D

decay of the high-frequency modes.

As well as considering eigenvalues, we also validate in Fig. 6.11 that the modifications of DMD
do not adversely affect the identified DMD modes. This is shown both visually in Fig. 6.11(a), and
quantitatively in Fig. 6.11(b), where we give the inner product 〈φi,noisy, φi,clean〉 of the ith modes
identified from clean and noisy data, where we have pre-scaled the modes to be of unit norm.
We enumerate the modes by the imaginary component of the associated eigenvalue, with mode
0 corresponding to the eigenvalue on the real axis. For modes that come in complex conjugate
pairs, we arbitrarily consider those with positive imaginary component. We see that both fbDMD
and tlsDMD marginally outperform regular DMD, in terms of identifying modes that are at least
as close to those identified from noise-free data. The decrease in the inner product as the mode
number increases is indicative of noise being more significant in higher-frequency modes, which
contain less energy.

6.4.2 Cylinder wake: experimental data

We now turn our attention to data acquired from water channel experiment. An anodized aluminum
cylinder of diameter D = 9.5 mm and length L = 260 mm was immersed in a recirculating, free-
surface water channel with freestream velocity U∞ = 4.35cm/s. This gives a Reynolds number
Re = DU∞

ν = 413. Further details of the experimental setup and methodology are provided in
[148]. We apply variants of DMD to 500 snapshots from a vorticity field of size 135× 80. Fig. 6.12
shows the identified eigenvalues and the predicted POD coefficients from the models identified from
DMD and tlsDMD. As in Sect. 6.4.1, we first project onto the 15 most energetic POD modes. Note
that some eigenvalues (typically quickly decaying) are outside the range of the plot. As was the case
with DNS data, we observe that DMD gives eigenvalues that are further into the left half plane that
and of the other methods. This manifests in the erroneous prediction of decaying POD coefficients
(Fig. 6.12(b)), particularly for modes that are less energetic, and more rapidly oscillating. We thus
conclude that more accurate low-dimensional models for the experimental results can be achieved
by using tlsDMD. We note that this improvement can be attained without explicit knowledge of
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Figure 6.11: (a) A subset of the DMD modes (real components) computed from applying various
variants of DMD to DNS data of flow around a cylinder. (b) Inner product between (normalized)
clean modes, and modes obtained from noisy data (with σN = 0.2U∞/D)

(a) Re(λ
c
)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2

Im
(λ

c
)

-6

-4

-2

0

2

4

6
DMD
tlsDMD

(b)

0 10 20 30

P
O

D
 M

o
d

e
 C

o
e

ff
ic

ie
n

t

-100

-50

0

50

100
POD Mode 2

0 10 20 30

P
O

D
 M

o
d

e
 C

o
e

ff
ic

ie
n

t

-100

-50

0

50

100

150

POD Mode 3

Measured

DMD

tlsDMD

Time, tD/U

0 10 20 30

P
O

D
 M

o
d

e
 C

o
e

ff
ic

ie
n

t

-40

-30

-20

-10

0

10

20

30

40
POD Mode 4

Time, tD/U

0 10 20 30

P
O

D
 M

o
d

e
 C

o
e

ff
ic

ie
n

t

-40

-30

-20

-10

0

10

20

30

40
POD Mode 5

Figure 6.12: (a) Eigenvalues and (b) POD coefficients identified from applying DMD and tlsDMD
to experimental vorticity data

the process and sensor noise characteristics.

6.5 Discussion and conclusions

It was shown in Sect. 6.2 that simple linear algebraic considerations can allow us to derive an
estimate for the bias that exists in all standard formulations of DMD. This subsequently led to
the formulation of the three modified algorithms that we suggest can be used to eliminate this
bias. Sect. 6.3 showed that this predicted bias is indeed present in the results of DMD. Directly
correcting for this bias term (Algorithm 3, ncDMD) was shown to almost completely eliminate
this bias. While this modification demonstrates that our characterization of the dominant effects
of noise was accurate, its usefulness is limited by the fact that it requires an accurate estimate of
the noise covariance. Additionally, the presence of a Σ−2 term in correction factor used in ncDMD
makes this computation unsuitable for cases with small singular values that are not truncated.
On the other hand, the correction factor in Algorithm 3 may be applied to existing DMD results
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with minimal computational effort. Algorithms 4 (fbDMD) and 5 (tlsDMD), which do not require
knowledge of the noise characteristics, were also found to correct for the bias, and also were able to
reduce the random error across many noise realizations (as seen by smaller associated confidence
ellipses in Fig. 6.2, for example). Furthermore, fbDMD and tlsDMD were found in Sect. 6.3.5 to also
compensate for the effect of process noise. This feature could be desirable or undesirable, depending
on the purpose for which DMD is being applied. Note that this is also consistent for the findings
in Sect. 6.4.2, where for a notionally periodic system, tlsDMD was found to give eigenvalues very
close to the imaginary axis, despite (presumably) the presence of both sensor and process noise.

In practice, the examples examined in Sects. 6.3.4, 6.4.1 and 6.4.2 suggest an overarching
principle: while regular DMD can be accurate for identifying dominant dynamics that have much
larger amplitudes than the noise in the data, accurate identification of the eigenvalues associated
with lower amplitude modes (and in particular, their real components) can be significantly improved
when using the modified DMD algorithms presented here. Conversely, if one is primarily concerned
with the identification of modes and their frequencies of oscillation, and less concerned with accurate
identification of growth/decay rates, then the effect of sensor noise is comparatively minimal, and
subsequently the choice of DMD algorithm is less important.

Fundamentally, the bias in DMD arises because the algorithm is essentially a least-squares
algorithm, which is designed for cases where the “independent” variable (which in DMD takes the
form of the data X) is known accurately, and the “dependent” variable Y contains the noise/error.
In reality, since X and Y should both be affected by noise, minimizing the error in both the X
and Y “directions” can allow for a more accurate answer to be obtained. One drawback of tlsDMD
is that it requires taking the SVD of a larger matrix. Note that for cases where n > m (i.e.,
the size of each snapshot is larger than the number of snapshots) and there is no truncation of
POD modes corresponding to small singular values, DMD gives the minimum Frobenius norm (of
A) solution to AX = Y . In this case, in principle neither fbDMD or tlsDMD should yield any
improvements. In reality, however, if there is noise in the data, then we do not necessarily want an
exact fit to the data, but rather an unbiased estimate of the noise-free dynamics. We may obtain
this by truncating POD modes that are deemed to be mostly noise, and use some variant of DMD
to identify the remaining dynamics. tlsDMD and fbDMD give very similar results, which suggests
that fbDMD can be viewed as a computationally cheaper alternative to approximating the results
of tlsDMD. Note that while fbDMD is often computationally cheaper, it relies on being able to
invert the matrix B̃m, which might be an ill-conditioned operation for some data.

In Sect. 6.3.3, we compared the variants presented here with two recent optimization algorithms
that have been proposed. The results show our algorithms outperforming both sparsity promoting
DMD and OMD. Note that since these algorithms are not in closed form, but instead contain opti-
mization procedures, the results depend somewhat on the specification of the relevant optimization
parameters. In this comparison, our use of Algorithms 3–5 relied upon the projection onto a low di-
mensional subspace before applying DMD-type algorithms. We particularly note that the tlsDMD
algorithm proposed here is slightly different from that given in [63] due to this POD projection,
which we found empirically to give improved results. We suggest that this is because the initial
truncation of low-energy POD modes has a filtering effect that better isolates the true dynamics,
at least for the datasets considered here. One could imagine, however, that in certain cases this
projection could lead to significant degradation of results. For example, where the dynamically im-
portant modes are highly dissimilar to the dominant POD modes, the flexibility for the projection
basis to be modified could be particularly advantageous. In such cases, sparsity promoting DMD or
OMD could give more favorable results. In general, it is relatively common in system identification
to use a subspace that is larger than the dimension of the underlying dynamics, and then later
truncate to obtain a reduced order model of an appropriate size/rank. This can be particularly
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important when the dealing with specific system inputs and outputs [112]. [73] discuss a number
of ways in which true dynamic modes can be distinguished for noisy modes, in the context of the
eigensystem realization algorithm. [149] further discusses how DMD modes can be scaled, from
which appropriate modes can be chosen. The spDMD algorithm in [71] essentially automates this
procedure, and comes with the additional potential advantage of not requiring a-priori knowledge
of the dimension of the reduced order dynamics to be identified. Note that it is also possible
to combine the modifications to DMD proposed here with the OMD and spDMD optimization
procedures, which could result in further improvements in some circumstances.

Though we used a large number of trials when testing our results on synthetic data in order to
obtain statistically meaningful findings, in reality one would most likely not have this luxury with
real data. In this case, it is important to understand for the size and quality of the data to be
analyzed, both the best algorithm to use, and the amount of confidence that should be had in the
results of the chosen algorithm.

While this work has been motivated by and has largely focused on sensor noise (that is, noise
which only affects measurements, and not the system dynamics), the characterization and removal
of process noise (i.e., disturbances to the system states) is entirely another matter. Interestingly,
the effect of process noise was identified analytically in [8] to be a parabolic decay in the growth rate
of identified eigenvalues with increasing frequency. It turns out that a similar effect is observed here
for the case of measurement noise. Isolating sensor noise from process noise (especially with limited
prior information about the statistics of either) is an important and challenging task, particularly
when dealing with more complex, turbulent flows, where the true dynamics exist on a wide range
of spatial and temporal scales. The fact that DMD, ncDMD and tlsDMD/fbDMD each perform
differently on these different forms of noise could itself be an important tool to this end.

Particularly in experimental data, users might typically preprocess data in a number of ways
before considering applying DMD-type algorithms. It could be advantageous to investigate precisely
how various averaging and smoothing operations affect the subsequent analysis of dynamics, and
subsequently whether such post-processing and analysis can be achieved through a single algorithm.

Ultimately, having a larger selection of possible algorithms should be of benefit to researchers
who desire the dynamical information that DMD-type algorithms can provide, who can choose based
on the size of the data, amount of noise present, required accuracy of the results, and amount of
computational resources available. One of the major advantages of DMD (and related algorithms)
advocated in [126] is the fact that it requires only direct data measurements, without needing
knowledge of any underlying system matrix, thus making it well suited to use on experimentally
acquired data. Inevitably, however, data from experiments is always affected to some extent by
noise. It is thus important to properly understand and quantify how noise can influence the results
of DMD. Conversely, the quest for high quality data can often require large investments of both
time and money. Formulating algorithms that are more robust to noisy data can be a cheaper
alternative to obtain results of sufficient accuracy. As it becomes easier to generate and store
increasingly large datasets, it is also important to recognize that simply feeding larger quantities
of data (e.g., more snapshots) into a given algorithm does not guarantee desired improvements in
the accuracy of their outputs, as illustrated in Figures 6.3 and 6.4.

The problem that fluid dynamicists face in extracting tractable information from large datasets
is not unique to fluids, and rather transcends a wide variety of fields of study (although other fields
are often not afforded the luxury of knowing the underlying differential equations). It is valuable to
recognize and make use of the parallels in previous and current developments across a wide range
of fields. We likewise hope that other areas can benefit from the work that is motivated by the
desire to understand how fluids flow.
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Appendix 1: Quantifying the size of the bias in DMD

We seek to quantify the magnitude of this bias present in DMD that was derived in Sect. 6.2.2, sub-
ject to certain simplifying assumptions on the nature of the data and noise. If the noise is uniform,
and spatially and temporally independent, then E(ÑXÑ∗

X) = E(U∗NXN∗
XU) = U∗mσ2

NU = mσ2
NI,

where σ2
N is the variance of each independent component of the noise matrix. Furthermore, if we

assure that we are projecting onto the POD modes of the clean data, then (X̃X̃∗) = Σ2, where
UΣV ∗ is the singular value decomposition of X. Thus with these assumptions, Eq. (6.2.6) can be
simplified to give

E(Ãm) = Ã(I −mσ2
NΣ−2). (6.5.1)

The (diagonal) entries Σ2
i of Σ2 have the interpretation of being the energy content of the ith POD

mode. We then should expect that Σ2
i ∼ mnqiσ

2
X , where σ2

X is the RMS value of the elements in

the data matrix X, and qi =
Σ2

i
Trace(Σ2)

is the proportion of the total energy of the system contained

in the ith POD mode. For this scaling, we make the assumption that adding/removing rows and
columns of data (i.e., varying m and n) does not affect either σX or qi. The bias term mσ2

NΣ−2 is
a diagonal matrix whose ith entry has a size (eb)i proportional to

(eb)i ∼
1

nqiSNR2
, (6.5.2)

where SNR is the signal-to-noise ratio. Thus sensor noise has the effect of reducing the diagonal

entries of the computed Ãm matrix by a multiplicative factor of 1 − σ2
N

nqiσ2
X
, which means that

POD coefficients are predicted to decay more rapidly than they actually do. This effect is most
pronounced for lower energy modes, for which the qi is smaller. We thus expect to identify with
DMD (continuous-time) eigenvalues that are further into the left half plane than they should be (or
would be if we applied DMD to noise-free data). [44] argues in the case of periodic data that the
growth rate of the eigenvalues should typically be the most challenging to identify, since there are a
range of pre-existing methods that can identify frequencies. Here we have argued that it is precisely
this growth rate that is most affected by noise. Importantly, the amount of bias is independent of
m, which suggests that the bias component of the error will be particularly dominant when we have
a large number of low-dimensional snapshots. Importantly, this suggests that one cannot always
effectively reduce the effect of noise by simply using more snapshots of data, since the bias error
will eventually become the dominant error.

While we can now quantify the magnitude of the bias in DMD, we do not as yet know how it
compares to the random component of the error that would arise from a given realization of noise.
To do this, we will estimate the typical size of the variance of individual entries of Ã, using the
standard definition

var
[
Ãij

]
= E

{(
(ỸmX̃+

m)ij − E
[
(ỸmX̃+

m)ij

])(
(ỸmX̃+

m)ij − E
[
(ỸmX̃+

m)ij

])}
. (6.5.3)

Referring back to Eq. (6.2.3), if we exclude terms that are quadratic or higher in noise, and assume
that the noise covariance matrix is sufficiently close to its expected value, we find that

(ỸmX̃+
m)− E

[
(ỸmX̃+

m)
]
= (Ỹ + ÑY )(X̃ + ÑX)(X̃X̃∗ + X̃Ñ∗

X + ÑXX̃∗ + ÑXÑ∗
X)−1 − Ỹ X̃+ − E(ÑXÑ∗

X)Σ−2

=
[
Ỹ X̃+(X̃Ñ∗

X + ÑXX̃∗) + ÑY X̃
∗ + Ỹ Ñ∗

X

]
Σ−2.

Elements of the terms X̃Ñ∗
X , ÑX Ỹ ∗, ÑY X̃

∗, and Ỹ Ñ∗
X are uncorrelated sums over m random

terms, with each term in the sum having variance nqiσ
2
Xσ2

N where as before qi is the energy fraction
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in the ith POD mode. This means that the sum will have variance mnqiσ
2
Xσ2

N . Assuming that
Ỹ X̃+(= Ã) does not greatly change the magnitude of quantities that it multiplies, and assuming
that qi remains constant when varying m and n, this means that we find that

var
[
Ãij

]
∼

σ2
N

mnσ2
X

. (6.5.4)

Thus the expected size of the random error in applying DMD to noisy data is

er ∼
1

m1/2n1/2SNR
. (6.5.5)

Comparing Eq. (6.5.5) with Eq. (6.5.2), we propose that the bias in DMD will be the dominant
source of error whenever

m1/2SNR > n1/2.
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Since I have the DerbySoar coming up in a week or so, and 
I knew there were some AMA Rule changes, I figured I’d 
take a look.  (Likely all you CD’s are up to speed on the new 
rules but I was out of commission for a few months, so got 
behind). 

<https://www.modelaircraft.org/files/RCSoaring2017-
2018final.pdf> / <http://tinyurl.com/ya6dqega>

What I found was that CD’s currently don’t seem know the 
rules or are ignoring them. At a recent ALES event I flew, the 
CD said, “Touch yourself, zero landing, touch your timer or 
anyone else zero flight.”  That’s wrong.

At another event I was not at, a pilot was in his landing spot 
retrieving his plane when another pilot flew over that pilot’s 
landing spot, touching the retrieving pilot with his model, 
at which time that pilot claimed he was hindered and 
should be allowed a second landing attempt.  That’s wrong 
too.  Regardless of where a person is on the flying field, any 
contact by a model will result in a zero flight score for the 
pilot.  

I have copied/pasted the new rule below:

6.5.4. Landing area penalty rule | Academy of Model 
Aeronautics Competition Regulations | Radio Control 
Soaring | pp. 17-18: 

Academy of Model Aeronautics 

The Landing Area 
Penalty Rule

Gordy Stahl, GordySoar@aol.com
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“If the model aircraft touches either the competitor or his helper 
during the landing maneuver, no landing points will be given.”

Bet you guys didn’t realize this one! Open season on timers!

“If the model aircraft touches any other person during the 
landing maneuver, no landing or flight points will be awarded for 
that round.”

This is where it gets kind of ugly....

Here’s a for instance:  A pilot’s model touches any person on 
the field other than himself or his timer, regardless of the reason 
for the “touch,” it’s a zero flight.  Not a reflight or a second 
chance at a landing. 

From what I could find and after asking the rules guys:  There 
are no exceptions including no “CD discretion,” since it is a 
safety issue.  It is the pilot’s responsibility to avoid contact 
by his model with a person.  It is not a “fair” rule... But it 
is THE AMA Rule.

To explain it in an extreme way:  During a flight, a nut 
pulls a trampoline into the landing area and begins doing 
backflips.  The pilots, on their way into the landing area must 
avoid making contact with guy by their models ...or receive a 
zero flight score.  

(Common sense would dictate that it was unfair, and not the 
pilot’s “fault,” but the rule says make contact with a person 
other than yourself or your timer, loose the flight.)

Here’s another silly example:

A visitor’s dog breaks loose, runs into the area where models 
are landing and the owner follows.  Touch the owner with your 
model, receive a zero flight.  Again, not fair, but the rule.

So:

If you got a zero flight for your model touching your timer during 
a landing or a launch, it was incorrect.

If you got a re-flight or re-land because your model touched 
a pilot retrieving his model, you got a score you didn’t 
deserve.  (Had you avoided the touch, you would have been 
correct in calling “hinder” for a re-flight.)

The Catch 22: If a CD decides to use his discretion to ignore the 
rules and a protest is filed with the AMA, that CD  could lose his 
CD status.  (I asked).

Gordy

From Fabien Gagné <fabien.gagne@saintremi.ca> 

Thanks Gordy, 

This situation just happened at one of our contests this 
weekend. The pilot slighly touched himself on the landing (he 
was standing too close to the pin). We gave him his flight time, 
but no landing points.

The rule is actually ill-written:

“If the model aircraft touches any other person during the 
landing maneuver, no landing OR flight points will be awarded 
for that round.” 

If the rule would be to attribute zero to the pilot’s round, 
semantically “and” would have been written. But it’s an OR, 
open for interpretation. With an OR, my read is that it’s up to 
the CD to decide WHICH of the flight score or landing score to 
award. We chose landing points = 0.

Since blocking the slide by a few inches does qualify as a big 
safety hindering, IMO the rule is not only badly written, it is also 
ill conceived relative to safety.

Fab
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The Northrop YA-9A had its first flight at the end of May 1972. 
Designed as an attack aircraft, two prototypes were built.  it 
was in competition with the Fairchild Republic YA-10. The YA-
10 was chosen over the YA-9A in the Air Force competition, 
with the YA-10 going into service as the A-10 Thunderbolt II/
Warthog. 

The YA-9 was a high-wing monoplane of aluminum-alloy 
construction. Honeycomb internal structures and chemically 
milled skins were features. Two Lycoming YF102 engines were 
placed in nacelles on either side of the fuselage.  

The aircraft had large vertical and horizontal stabilizers to 
improve stability in low-level flight. The split ailerons could be 
used as airbrakes and differential deployment could be used to 
yaw the aircraft without banking. This improved weapon aiming.  

Following the fly-off with the YA-10, both YA-9 prototypes were 
provided to NASA for further flight testing. After being retired 
in April 1973, the engines were removed, but both prototypes 
were retained otherwise intact.

71-1367 is currently in a storage yard awaiting restoration at 
Edwards AFB, California. 

71-1368 is on display at March Field Air Museum, March Air 
Reserve Base, California. 

Specifications: 
Length:  53' 6"  16.31 m
Height:  17' 10"   5.44 m
Wingspan:  57'   17.37 m

Northrop YA-9A
Slope Soaring Candidate

https://media.defense.gov/2017/Jun/01/2001755807/-1/-1/0/170601-F-ZZ999-999.JPG

https://upload.wikimedia.org/wikipedia/commons/c/c6/Northrop_A-9A_parked.jpg

https://media.defense.gov/2017/Jun/01/2001755807/-1/-1/0/170601-F-ZZ999-999.JPG
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<http://www.aereo.jor.br/wp-content/uploads/2010/01/A-9A-c.jpg> https://upload.wikimedia.org/wikipedia/commons/8/8f//Desktop folders/RCSD-2017-07/Northrop 
YA-9A/*Northrop_YA-9A_‘11368’_(26683410563).jpg

https://upload.wikimedia.org/wikipedia/commons/5/5e/Northrop_A-9A_prototype.jpg https://upload.wikimedia.org/wikipedia/commons/c/cb/Northrop_A-9A_at_touchdown.jpg
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https://www.the-blueprints.com/blueprints/modernplanes/northrop/75945/view/northrop_ya_9/




